Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 37 Issue (0): 26-37    DOI: 10.1016/j.jmst.2019.07.036
Research Article Current Issue | Archive | Adv Search |
Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy
Yanfu Chaia, Chao Hea, Bin Jiangab*(), Jie Fua**(), Zhongtao Jiangc, Qingshan Yangd, Haoran Shenge, Guangsheng Huanga, Dingfei Zhanga, Fusheng Panab
a State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
b Chongqing Academy of Science and Technology, Chongqing, 401123, China
c Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing, 402160, China
d School of Metallurgy and Material Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
e Shanghai Aerospace Equipment Manufactory, Shanghai, 200245, China
Download:  HTML  PDF(10085KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and mechanical properties of Mg-Sn-Ca-Ce alloys with different Ce contents (0.0, 0.2, 0.5, 1.0 wt%) were studied at room temperature. Ce additions to ternary Mg-Sn-Ca alloy resulted in grain refinement as well as a change in the category of second phase from CaMgSn to (Ca, Ce)MgSn and Mg12Ce. The volume fraction of second phase increased with rising Ce content, which aggravated the restriction of DRXed grain growth during the extrusion process and eventually led to texture weakening of as-extruded Mg-Sn-Ca based alloys. In terms of plasticity, owing to vigorously activated basal slip and homogeneous distributed tensile strain in tension, the tensile ductility of as-extruded alloys reached the maximum value of 27.6% after adding 0.2 wt% Ce, which enhanced by about 26% than that of ternary Mg-Sn-Ca alloy. However, further Ce additions (0.5 and 1.0 wt%) would coarsen the second phase particles and then impair ductility. The tension-compression yield asymmetry of as-extruded Mg-Sn-Ca ternary alloy was alleviated greatly via Ce additions, due to the joint effects of grain refinement, increased amount of strip distributed second phase particles and texture weakening.

Key words:  Mg-Sn-Ca alloy      Ce content      Microstructure      Texture      Mechanical properties     
Received:  31 May 2019     
Corresponding Authors:  Jiang Bin,Fu Jie     E-mail:  jiangbinrong@cqu.edu.cn;fujie3057@cqu.edu.cn

Cite this article: 

Yanfu Chai, Chao He, Bin Jiang, Jie Fu, Zhongtao Jiang, Qingshan Yang, Haoran Sheng, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy. J. Mater. Sci. Technol., 2020, 37(0): 26-37.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2019.07.036     OR     https://www.jmst.org/EN/Y2020/V37/I0/26

Designation Nominal alloy Composition (wt%)
Sn Ca Ce Mg
TXE110 Mg-1.0Sn-0.6Ca-0.0Ce 1.31 0.64 - Bal.
TXE1102 Mg-1.0Sn-0.6Ca-0.2Ce 1.26 0.68 0.14 Bal.
TXE1105 Mg-1.0Sn-0.6Ca-0.5Ce 1.32 0.69 0.53 Bal.
TXE111 Mg-1.0Sn-0.6Ca-1.0Ce 1.29 0.68 1.17 Bal.
Table 1  Chemical compositions of the as-cast Mg-1.0Sn-0.6Ca-based alloys.
Fig. 1.  OM and backscattered electron- (BSE-) SEM images of the as-cast Mg-1.0Sn-0.6Ca-based alloys: (a) TXE110 alloy; (b) TXE1102 alloy; (c) TXE1105 alloy; (d) TXE111 alloy.
Fig. 2.  OM and BSE-SEM images of the as-extruded Mg-1.0Sn-0.6Ca-based alloys: (a) TXE110 alloy; (b) TXE1102 alloy; (c) TXE1105 alloy; (d) TXE111 alloy.
Fig. 3.  (Ca, Ce)MgSn phase particles in as-extruded TXE111 alloy sheet.
Fig. 4.  Mg12Ce phase particles in as-extruded TXE111 alloy sheet.
Fig. 5.  EBSD inverse pole figure maps and (0001) pole figures from the ED-ND plane of as-extruded Mg-1.0Sn-0.6Ca based alloys: (a) TXE110 alloy; (b) TXE1102 alloy; (c) TXE1105 alloy; (d) TXE111 alloy.
Fig. 6.  True tensile and compressive stress-strain curves of as-extruded Mg-1.0Sn-0.6Ca-based alloys: (a) in tension; (b) in compression.
Samples In tension In compression CYS/TYS
TYS (MPa) UTS (MPa) EL (%) CYS (MPa) UCS (MPa) EL (%)
TXE110 93.3 244.6 21.9 64.2 249.2 21.8 0.69
TXE1102 96.8 263.6 27.6 79.4 250.2 22.8 0.82
TXE105 109.4 266.3 25.2 93.3 260.9 23.1 0.85
TXE111 104.2 261.9 22.2 89.8 251.8 22.4 0.86
Table 2  Summary of mechanical properties of four as-extruded alloys which suffer from uniaxial tensile and compressive tests along the ED.
Fig. 7.  Different types of grains, EBSD IPF maps in the ED-ND plane and {0001} pole figures of four as-extruded alloys corresponding to grains with size < 3?μm, 3-12?μm and > 12?μm, respectively: (a) TXE110 alloy; (b) TXE1102 alloy; (c) TXE1105 alloy; (d) TXE111 alloy.
Fig. 8.  Experimental (lines) and simulated (symbol) true stress and true strain curves in tension and compression with correspondingly relative activities of different deformation modes in tension: (a) TXE110 alloy sheet; (b) TXE1102 alloy sheet.
Fig. 9.  EBSD measurement results of TXE110 and TXE1102 alloys deformed to tensile strains of (a, b) 10% and (c, d) 20%.
Samples Modes τ0 (MPa) τ1
(MPa)
θ0
(MPa)
θ1
(MPa)
hss′
TXE110 Basal slip 28 20 200 155 1
Prismatic <a> slip 70 12 500 70 1
Pyramidal <c+a> slip 150 100 2800 0 1
{10-12} tensile twin 40 0 0 0 1
TXE1102 Basal slip 34 4 200 165 1
Prismatic <a> slip 90 5 60 40 1
Pyramidal <c+a> slip 130 85 1800 0 1
{10-12} tensile twin 45 0 0 0 1
Table 3  Parameters for VPSC constitutive model of as-extruded TXE110 and TXE1102 alloys.
Fig. 10.  Quantitative analysis of basal slip and prismatic slip Schmid factor (SF) of the as-extruded TXE110 and TXE1102 alloys during tensile deformation process.
Fig. 11.  Quantitative analysis of (0001)/<11-20> basal slip Schmid factor (SF) of the as-extruded alloys under tension along the ED: (a, e) TXE110 alloy; (b, f) TXE1102 alloy; (c, g) TXE1105 alloy; (d, h) TXE111 alloy.
Fig. 12.  Schmid factor as a function of relative spatial position and relative distributions for {10-12} twinning under compression along the ED: (a, e) TXE110 alloy; (b, f) TXE1102 alloy; (c, g) TXE1105 alloy; (d, h) TXE111 alloy. Note that a negative value of SF for {10-12} twinning would lead to contraction along the C-axes of grains and not be activated. A minus SF for {10-12} twinning is therefore treated as zero during calculation of the distribution of SFs.
[1] R.K. Sabat, A.P. Brahme, R.K. Mishra, K. Inal, S. Suwas, Acta Mater. 161(2018) 246-257.
[2] M.G. Jiang, C. Xu, H. Yan, G.H. Fan, T. Nakata, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, B.H. Lu, Acta Mater. 157(2018) 53-71.
[3] W.T. Jia, L.F. Ma, Q.Z. Le, C.C. Zhi, P.T. Liu, J. Alloys Compd. 783(2019) 863-876.
[4] C.C. Zhi, L.F. Ma, Q.X. Huang, Z.Q. Huang, J.B. Lin, J. Mater. Process. Technol. 5(2018) 1555-1561.
[5] J. Xu, B. Jiang, J.F. Song, J.J. He, P. Gao, W.J. Liu, T.H. Yang, G.S. Huang, F.S. Pan, Mater. Sci. Eng. A 732 (2018) 1-5.
[6] S.H. You, Y.D. Huang, K.U. Kainer, N. Hort, J. Magnes. Alloys 5 (2017) 239-253.
[7] D.B. Xia, G.S. Huang, S.S. Liu, A.T. Tang, S. Gavras, Y.D. Huang, N. Hort, B. Jiang, F.S. Pan, Mater. Sci. Eng. A 756 (2019) 1-10.
[8] C.Y. Zhao, X.H. Chen, F.S. Pan, S.Y. Gao, D. Zhao, X.F. Liu, Mater. Sci. Eng. A 713 (2018) 244-252.
[9] C.Y. Zhao, X.H. Chen, F.S. Pan, J.F. Wang, S.Y. Gao, T. Tu, C.Q. Liu, J.H. Yao, A. Atrens, J. Mater. Sci. Technol. 35(2019) 142-150.
[10] F.R. Elsayed, T.T. Sasaki, T. Ohkubo, H. Takahashi, S.W. Xu, S. Kamado, K. Hono, Mater. Sci. Eng. A 588 (2013) 318-328.
[11] B.H. Kim, S.W. Lee, Y.H. Park, I.M. Park, J. Alloys Compd. 493(2010) 502-506.
[12] T.T. Sasaki, K. Yamamoto, T. Honma, S. Kamado, K. Hono, Scr. Mater. 59(2008) 1111-1114.
[13] W.L. Cheng, H.S. Kim, B.S. You, B.H. Koo, S.S. Park, Mater. Lett. 65(2011) 1525-1527.
[14] Z.T. Jiang, B. Jiang, H. Yang, Q.H. Wang, J.H. Dai, F.S. Pan, J. Alloys Compd. 647(2015) 357-363.
[15] Y.F. Chai, B. Jiang, J.F. Song, Q.H. Wang, J.J. He, J. Zhao, G.S. Huang, Z.T. Jiang, F.S. Pan, Mater. Sci. Eng. A 730 (2018) 303-316.
[16] H.C. Pan, G.W. Qin, Y.M. Huang, Y.P. Ren, X.C. Sha, X.D. Han, Z.Q. Liu, C.F. Li, X.L. Wu, H.W. Chen, C. He, L.J. Chai, Y.Z. Wang, J.F. Nie, Acta Mater. 149(2018) 350-363.
[17] A.Y. Zhang, R. Kang, L. Wu, H.C. Pan, H.B. Xie, Q.Y. Huang, Y.J. Liu, Z.R. Ai, L.F. Ma, Y.P. Ren, G.W. Qin, Mater. Sci. Eng. A 754 (2019) 269-274.
[18] Y.Z. Du, X.G. Qiao, M.Y. Zheng, K. Wu, S.W. Xu, Mater. Sci. Eng. A 620 (2015) 164-171.
[19] Y.Z. Du, M.Y. Zheng, X.G. Qiao, D.B. Wang, W.Q. Peng, K. Wu, B.L. Jiang, Mater. Sci. Eng. A 656 (2016) 67-74.
[20] T. Laser, C. Hartig, M.R. Nürnberg, D. Letzig, R. Bormann, Acta Mater. 56(2008) 2791-2798.
[21] M.B. Yang, F.S. Pan, L. Cheng, J. Shen, Mater. Sci. Eng. A 512 (2009) 132-138.
[22] M.B. Yang, Y.L. Ma, F.S. Pan, Trans. Nonferrous Met. Soc. China 19 (2009) 1087-1092.
[23] C. Tomé, G.R. Canova, U.F. Kocks, N. Christodoulou, J.J. Jonas, Acta Metall. 32(1984) 1637-1653.
[24] R.A. Lebensohn, C.N. Tomé, Acta Metall. Mater. 41(1993) 2611-2624.
[25] A. Molinari, G.R. Canova, S. Ahzi, Acta Metall. 35(1987) 2983-2994.
[26] L.Y. Zhao, A. Chapuis, Y.C. Xin, Q. Liu, J. Alloys Compd. 710(2017) 159-165.
[27] J. Sun, L. Jin, Dong S, J. Dong, Z.Y. Zhang, F.H. Wang, W.J. Ding, A.A. Luo, Mater. Des. 122(2017) 164-171.
[28] W.J. Ren, R.L. Xin, J.B. Xu, B. Song, L. Zhang, Q. Liu, J. Alloys Compd. 792(2019) 610-616.
[29] Y.F. Chai, B. Jiang, J.F. Song, Q.H. Wang, H. Gao, B. Liu, G.S. Huang, D.F. Zhang, F.S. Pan, J. Alloys Compd. 782(2019) 1076-1086.
[30] Y.F. Chai, B. Jiang, J.F. Song, B. Liu, G.S. Huang, D.F. Zhang, F.S. Pan, Mater. Sci. Eng. A 746 (2019) 82-93.
[31] A. Kozlov, J. Gröbner, R. Schmid-Fetzer, J. Phase Equilib. Diff. 35(2014) 502-517.
[32] M. Celikin, R. Gauvin, M. Pekguleryuz, Mater. Sci. Eng. A 719 (2018) 199-205.
[33] N. Stanford, Mater. Sci. Eng. A 528 (2010) 314-322.
[34] H.L. Ding, X.B. Shi, Y.Q. Wang, G.P. Cheng, S. Kamado, Mater. Sci. Eng. A 645 (2015) 196-204.
[35] Y. Ali, D. Qiu, B. Jiang, F.S. Pan, M.X. Zhang, J. Alloys Compd. 619(2015) 639-651.
[36] Y. Jiang, Y.A. Chen, J.J. Gao, Mater. Des. 105(2016) 34-40.
[37] W.L. Xiao, S.S. Jia, J. Wang, Y.M. Wu, L.M. Wang, Mater. Sci. Eng. A 474 (2008) 317-322.
[38] L. Shang, I.H. Jung, S. Yue, R. Verma, E. Essadiqi, J. Alloys Compd. 492(2010) 173-183.
[39] C.D. Barrett, A. Imandoust, A.L. Oppedal, K. Inal, M.A. Tschopp, H. El Kadiri, Acta Mater. 128(2017) 270-283.
[40] H.M. Yin, B. Jiang, X.Y. Huang, Y. Zeng, Q.S. Yang, M.X. Zhang, F.S. Pan, Trans. Nonferrous Met. Soc. China 23 (2013) 1936-1941.
[41] J. Bohlen, S.B. Yi, D. Letzig, K.U. Kainer, Mater. Sci. Eng. A 527 (2010) 7092-7098.
[42] K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, D. Letzig, Scr. Mater. 63(2010) 725-730.
[43] J.P. Hadorn, K. Hantzsche, S.B. Yi, J. Bohlen, D. Letzig, J.A. Wollmershauser, S.R. Agnew, Metall. Mater. Trans. A 43 (2012) 1347-1362.
[44] S.W. Lee, S.H. Kim, W.K. Jo, W.H. Hong, W. Kim, B.G. Moon, S.H. Park, J. Alloys Compd. 791(2019) 700-710.
[45] Q.H. Wang, Y.Q. Shen, B. Jiang, A.T. Tang, Y.F. Chai, J.F. Song, T.H. Yang, G.S. Huang, F.S. Pan, Mater. Sci. Eng. A 736 (2018) 404-416.
[46] S.W. Xu, K. Oh-Ishi, H. Sunohara, S. Kamado, Mater. Sci. Eng. A 558 (2012) 356-365.
[47] H.X. Wang, L.X. Zhang, W.Z. Chen, D.Q. Fang, W.C. Zhang, G.R. Cui, Mater. Sci. Eng. A 736 (2018) 239-247.
[48] S.W. Bae, S.H. Kim, J.U. Lee, W.K. Jo, W.H. Hong, W. Kim, S.H. Park, J. Alloys Compd. 766(2018) 748-758.
[49] B. Kim, S.M. Baek, H.Y. Jeong, J.G. Lee, S.S. Park, J. Alloys Compd. 660(2016) 304-309.
[50] S.H. Kim, S.H. Park, Mater. Sci. Eng. A 733 (2018) 285-290.
[51] T. Homma, N. Kunito, S. Kamado, Scr. Mater. 61(2009) 644-647.
[52] G.G. Wang, G.S. Huang, X. Chen, Q.Y. Deng, A.T. Tang, B. Jiang, F.S. Pan, Mater. Sci. Eng. A 705 (2017) 46-54.
[53] D.B. Xia, G.S. Huang, Q.Y. Deng, B. Jiang, S.S. Liu, F.S. Pan, Mater. Sci. Eng. A 715 (2018) 379-388.
[54] D.B. Xia, X. Chen, G.S. Huang, B. Jiang, A.T. Tang, H. Yang, S. Gavras, Y.D. Huang, N. Hort, F.S. Pan, Scr. Mater. 171(2019) 31-35.
[1] Enze Zhou, Dongxu Qiao, Yi Yang, Dake Xu, Yiping Lu, Jianjun Wang, Jessica A. Smith, Huabing Li, Hongliang Zhao, Peter K. Liaw, Fuhui Wang. A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms[J]. 材料科学与技术, 2020, 46(0): 201-210.
[2] Zhen Chen, Daoyong Cong, Yin Zhang, Xiaoming Sun, Runguang Li, Shaohui Li, Zhi Yang, Chao Song, Yuxian Cao, Yang Ren, Yandong Wang. Intrinsic two-way shape memory effect in a Ni-Mn-Sn metamagnetic shape memory microwire[J]. 材料科学与技术, 2020, 45(0): 44-48.
[3] Peng Li, Shuai Wang, Yueqing Xia, Xiaohu Hao, Honggang Dong. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy[J]. 材料科学与技术, 2020, 45(0): 59-69.
[4] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
[5] S.Z. Wu, X.G. Qiao, M.Y. Zheng. Ultrahigh strength Mg-Y-Ni alloys obtained by regulating second phases[J]. 材料科学与技术, 2020, 45(0): 117-124.
[6] Xueze Jin, Wenchen Xu, Zhongze Yang, Can Yuan, Debin Shan, Bugang Teng, Bo Cheng Jin. Analysis of abnormal texture formation and strengthening mechanism in an extruded Mg-Gd-Y-Zn-Zr alloy[J]. 材料科学与技术, 2020, 45(0): 133-145.
[7] P.G. Kubendran Amos, Ramanathan Perumal, Michael Selzer, Britta Nestler. Multiphase-field modelling of concurrent grain growth and coarsening in complex multicomponent systems[J]. 材料科学与技术, 2020, 45(0): 215-229.
[8] Shiwei Ci, Jingjing Liang, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming[J]. 材料科学与技术, 2020, 45(0): 23-34.
[9] Jian Yang Zhang, Bin Xu, Naeemul Haq Tariq, MingYue Sun, DianZhong Li, Yi Yi Li. Microstructure evolutions and interfacial bonding behavior of Ni-based superalloys during solid state plastic deformation bonding[J]. 材料科学与技术, 2020, 46(0): 1-11.
[10] P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion[J]. 材料科学与技术, 2020, 45(0): 98-107.
[11] Lijin Dong, Cheng Ma, Qunjia Peng, En-Hou Han, Wei Ke. Microstructure and stress corrosion cracking of a SA508-309L/308L-316L dissimilar metal weld joint in primary pressurized water reactor environment[J]. 材料科学与技术, 2020, 40(0): 1-14.
[12] Wei Fu, Xiaoguo Song, Ruichen Tian, Yuzhen Lei, Weimin Long, Sujuan Zhong, Jicai Feng. Wettability and joining of SiC by Sn-Ti: Microstructure and mechanical properties[J]. 材料科学与技术, 2020, 40(0): 15-23.
[13] Qi Wang, Wen Shi, Bo Zhu, Dang Sheng Su. An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin[J]. 材料科学与技术, 2020, 40(0): 24-30.
[14] Z.C. Luo, H.P. Wang. Primary dendrite growth kinetics and rapid solidification mechanism of highly undercooled Ti-Al alloys[J]. 材料科学与技术, 2020, 40(0): 47-53.
[15] Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J]. 材料科学与技术, 2020, 40(0): 88-98.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.