J. Mater. Sci. Technol. ›› 2020, Vol. 57: 101-112.DOI: 10.1016/j.jmst.2020.02.090
• Research Article • Previous Articles Next Articles
G.Y. Lia, L.F. Caob,c, J.Y. Zhanga,*(), X.G. Lia, Y.Q. Wanga, K. Wua, G. Liua,*(
), J. Suna,*(
)
Received:
2020-01-06
Accepted:
2020-02-22
Published:
2020-11-15
Online:
2020-11-20
Contact:
J.Y. Zhang,G. Liu,J. Sun
G.Y. Li, L.F. Cao, J.Y. Zhang, X.G. Li, Y.Q. Wang, K. Wu, G. Liu, J. Sun. An insight into Mg alloying effects on Cu thin films: microstructural evolution and mechanical behavior[J]. J. Mater. Sci. Technol., 2020, 57: 101-112.
Fig. 1. Schematic shows of (a): load-time curves of CRL test with various strain rate, (b) an example of load/ displacement-time curves of CLH creep test.
Fig. 3. (a1-c1) Microstructure evolution with different Mg composition. The top right corner is corresponding SADPs. Growth direction is marked with blue arrows. (a2-c2) Corresponding HRTEM images of twin morphologies in samples with different Mg composition. (a3-c3) Grain size d histograms of Cu-Mg alloyed thin films with different composition.
Fig. 4. Statistic data of grain size d and average twin spacing λ as well as twin fraction PT are obtained by fitting the data via the Lognormal function of corresponding histograms. As is indicated by the red lines in (a) average grain size; black and blue lines in (b) twin spacing and fraction as a function of Mg composition, respectively.
Fig. 5. An overview of one of 3DAP samples of Cu-6.5 at.% Mg containing two GBs. (a) Front view and top view of a needle-like sample. (b) Mg atoms distribution along blue tubularis direction in Fig. 5(a). Red solid line is the Gaussian compositional field fitting of Mg concentration curve. Segregational width δ of the two GBs is 5.03 nm and 4.07 nm, respectively.
Fig. 6. Post mortem TEM features of the indented Cu-6.5 at.% Mg films. (a) The cross-sectional TEM images after nanoindentation test. Here we defined three positions with different deformation degree. Position 1: undeformed area; 2: medium deformed area; 3: severely deformed area. (b) A magnified, bright-field TEM image of the area near indentation. (c) The corresponding dark-field TEM image of the deformed area in (b), shows grain apex barreling under indenter during creep test. (d) Grain sizes of these three positions. Inserted images: 3D-SADPs taken from: left-up corner: position 1 and right-down corner: position 3.
Fig. 7. Post mortem TEM features of the indented Cu-16.8 at.% Mg films. (a) The cross-sectional TEM images after nanoindentation test. Here we defined three positions with different deformation degree. Position 1: undeformed area; 2: medium deformed area; 3: severely deformed area. (b) A magnified, bright-field TEM image of the area near indentation. (c) The corresponding dark-field TEM image of the severely deformed area in (b). Inserted HRTEM image shows deformation twins adjoining indented surface. (d) Grain sizes of these three positions. Inserted images: 3D-SADPs taken from: left-up corner: position 1 and right-up corner: position 3.
Fig. 8. Constant rate of load (CRL) tests. (a) An example of load-depth curves of Cu-2.8 at.% Mg sample in the CRL test with different strain rate. (b) Hardness of Cu-Mg alloyed thin films as well as pure Cu is plotted as a function of strain rates. The slope of linear fit represents corresponding strain rate sensitivity (SRS m).
Fig. 9. Constant load and hold (CLH) creep tests. (a) Representative load-depth curves of various Cu-Mg alloyed thin films. (b) Representative depth-time experimental data and fitting curve of Cu-6.5 at.% Mg sample. (c) Creep response curves of Cu films alloyed with different Mg composition. Inserted image shows creep depth of various samples with different Mg composition. (d) An example of the experimental method to determine the strain rate sensitivity (SRS mc) in CLH test.
Fig. 10. Strain rate sensitivity (SRS m) values of Cu-Mg alloyed thin films derived from both CRL test and CLH creep test. As a comparison, the strain rate sensitivity of coarse grained, bulk Cu-Mg alloy with a Mg composition of ~ 6 at.% is also measured. The SRS m in CRL test and SRS mc in CLH creep test are plotted by half-hollow symbols in red and blue, respectively.
Fig. 11. Nanoindentation results of elastic modulus and hardness and corresponding fitting curves: (a) the measured elastic modulus of Cu-Mg (Mg spanning from 0-16.8 at.%) samples and linear fitting curve and a comparison with the reported values of polycrystalline pure Cu in literature [30,60]; (b) the calculated two types of solution-related strengthening mechanisms, containing Fleischer strengthening and R-S softening; (c) the calculated reduced GB energy as a function of Mg concentration at GB; (d) the measured hardness (stress) and a combined strengthening model to quantify the Mg concentration-dependent hardness of NT Cu-Mg thin films.
Fig. 12. Comparison of SRS m derived from different testing methods of the present Cu-Mg alloyed thin films and the reported NC Cu [30,40,68,69], NT Cu [20,23,70] as well as bulk Cu [20], is plotted as a function of grain size. Pure Cu and Cu alloys with nanotwins (marked as NT) are plotted as solid symbols. Pure Cu with non-twins (marked as NC) are plotted as half-hollow symbols.
[1] |
L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu, Science 304 (2004) 422-426.
DOI URL PMID |
[2] |
W.A. Lanford, P.J. Ding, W. Wang, S. Hymes, S.P. Murarka, Mater. Chem. Phys. 41(1995) 192-198.
DOI URL |
[3] |
K. Maki, Y. Ito, H. Matsunaga, H. Mori, Scr. Mater. 68(2013) 777-780.
DOI URL |
[4] |
S.M. Yi, J.U. An, S.S. Hwang, J.R. Yim, Y.H. Huh, Y.B. Park, Y.C. Joo, Thin Solid Films 516 (2008) 2325-2330.
DOI URL |
[5] | T.S.D. Felipe, S.P. Murarka, S. Bedell, W.A. Lanford, Thin Solid Films 514 (1998) 49-53. |
[6] |
O. Anderoglu, A. Misra, H. Wang, F. Ronning, M.F. Hundley, X. Zhang, Appl. Phys. Lett. 93(2008), 083108.
DOI URL |
[7] |
R.T. Ott, J. Geng, M.F. Besser, M.J. Kramer, Y.M. Wang, E.S. Park, R. LeSar, A.H. King, Acta Mater. 96(2015) 378-389.
DOI URL |
[8] |
L. Lu, X. Chen, X. Huang, K. Lu, Science 323 (2009) 607-610.
DOI URL PMID |
[9] |
D. Bufford, H. Wang, X. Zhang, Acta Mater. 59(2011) 93-101.
DOI URL |
[10] |
X. Zhang, A. Misra, H. Wang, T.D. Shen, M. Nastasi, T.E. Mitchell, J.P. Hirth, R.G. Hoagland, J.D. Embury, Acta Mater. 52(2004) 995-1002.
DOI URL |
[11] |
J.T. Zhao, J.Y. Zhang, L.F. Cao, Y.Q. Wang, P. Zhang, K. Wu, G. Liu, J. Sun, Acta Mater. 132(2017) 550-564.
DOI URL |
[12] |
N.M. Heckman, L. Velasco, A.M. Hodge, Adv. Eng. Mater. 18(2016) 918-922.
DOI URL |
[13] |
P. Zhang, J.Y. Zhang, J. Li, G. Liu, K. Wu, Y.Q. Wang, J. Sun, Acta Mater. 76(2014) 221-237.
DOI URL |
[14] |
X.G. Li, L.F. Cao, J.Y. Zhang, J. Li, J.T. Zhao, X.B. Feng, Y.Q. Wang, K. Wu, P. Zhang, G. Liu, J. Sun, Acta Mater. 151(2018) 87-99.
DOI URL |
[15] |
Y. Zhang, J.M. Guo, J.H. Chen, C.L. Wu, K.S. Kormout, P. Ghosh, Z.L. Zhang, J. Alloys Compd. 776(2019) 807-818.
DOI URL |
[16] |
S. Nagarjuna, M. Srinivas, K.K. Sharma, Acta Mater. 48(2000) 1807-1813.
DOI URL |
[17] | W. Merlijn van Spengen, Microelectron.Reliab. 43(2003) 1049-1060. |
[18] |
P.S. Phani, W.C. Oliver, Acta Mater. 111(2016) 31-38.
DOI URL |
[19] |
Q. Wei, S. Cheng, K.T. Ramesh, E. Ma, Mater. Sci. Eng. A 381 (2004) 71-79.
DOI URL |
[20] |
J. Chen, L. Lu, K. Lu, Scr. Mater. 54(2006) 1913-1918.
DOI URL |
[21] |
L. Lu, T. Zhu, Y.F. Shen, M. Dao, K. Lu, S. Suresh, Acta Mater. 57(2009) 5165-5173.
DOI URL |
[22] |
X.S. Yang, Y.J. Wang, G.Y. Wang, H.R. Zhai, L.H. Dai, T.Y. Zhang, Acta Mater 108 (2016) 252-263.
DOI URL |
[23] |
L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, S. Suresh, Acta Mater. 53(2005) 2169-2179.
DOI URL |
[24] |
H. Lim, M.G. Lee, J.H. Kim, B.L. Adams, R.H. Wagoner, Int. J. Plast. 27(2011) 1328-1354.
DOI URL |
[25] |
X. Li, Y. Wei, L. Lu, K. Lu, H. Gao, Nature 464 (2010) 877-880.
DOI URL PMID |
[26] |
I.A. Ovid’Ko, A.G. Sheinerman, Int. J. Plast. 96(2017) 227-241.
DOI URL |
[27] |
M.R. Chellali, Z. Balogh, H. Bouchikhaoui, R. Schlesiger, P. Stender, L. Zheng, G. Schmitz, Nano Lett. 12(2012) 3448-3454.
DOI URL PMID |
[28] |
H. Feng, Q.H. Fang, L.C. Zhang, Y.W. Liu, Int. J. Plast. 42(2013) 50-64.
DOI URL |
[29] |
J. Li, J.Y. Zhang, G. Liu, J. Sun, Int. J. Plast. 85(2016) 172-189.
DOI URL |
[30] |
Y. Wei, A.F. Bower, H. Gao, Acta Mater. 56(2008) 1741-1752.
DOI URL |
[31] |
R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh, Acta Mater. 51(2003) 5159-5172.
DOI URL |
[32] |
Z.H. Cao, L. Wang, K. Hu, Y.L. Huang, X.K. Meng, Acta Mater. 60(2012) 6742-6754.
DOI URL |
[33] |
S. Takecchi, A.S. Argos, Acta Matall. 24(1976) 883-889.
DOI URL |
[34] |
M.J. Mayo, W.D. Nix, Acta Mater. 36(1988) 2183-2192.
DOI URL |
[35] |
Z.S. Ma, Y.C. Zhou, S.G. Long, C. Lu, Int. J. Plast. 34(2012) 1-11.
DOI URL |
[36] |
C.C. Huang, M.K. Wei, S. Lee, Int. J. Plast. 27(2011) 1093-1102.
DOI URL |
[37] |
W.C. Oliver, G.M. Pharr, J. Mater. Res. 19(2004) 3-20.
DOI URL |
[38] |
B.N. Lucas, W.C. Oliver, Metall. Mater. Trans. A 30 (1999) 601-610.
DOI URL |
[39] |
H.S. Chou, J.C. Huang, Y.H. Lai, L.W. Chang, X.H. Du, J.P. Chu, T.G. Nieh, J. Alloys Compd. 483(2009) 341-345.
DOI URL |
[40] |
P. Huang, F. Wang, M. Xu, K.W. Xu, T.J. Lu, Acta Mater. 58(2010) 5196-5205.
DOI URL |
[41] |
B.K. VanLeeuwen, K.A. Darling, C.C. Koch, R.O. Scattergood, B.G. Butler, Acta Mater. 58(2010) 4292-4297.
DOI URL |
[42] | J.R. Trelewicz, C.A. Schuh, Phys. Rev. B 79 (2009) 202-214. |
[43] |
A. Takeuchi, A. Inoue, Mater. Trans. 46(2005) 2817-2829.
DOI URL |
[44] | J.-Y. Zhang, G. Liu, R.H. Wang, J. Li, J. Sun, E. Ma,Phys. Rev. B 81 (2010), 172104. |
[45] |
Q. Yu, Z.W. Shan, J. Li, X.X. Huang, L. Xiao, J. Sun, E. Ma, Nature 463 (2010) 335-338.
DOI URL PMID |
[46] |
Y.T. Zhu, J. Narayan, J.P. Hirth, S. Mahajan, X.L. Wu, X.Z. Liao, Acta Mater. 57(2009) 3763-3770.
DOI URL |
[47] | Q. Dong, Z. Luo, H. Zhu, L.Y. Wang, T. Ying, Z.H. Jin, D.J. Li, W.J. Ding, X.Q. Zeng, J. Mater. Sci. Technol. 34(2018) 1773-1780. |
[48] |
H. Van Swygenhoven, P.M. Derlet, A.G. Froseth, Nat. Mater. 3(2004) 399-403.
DOI URL PMID |
[49] |
J.Y. Zhang, G. Liu, J. Sun, Int. J. Plast. 50(2013) 1-17.
DOI URL |
[50] |
Y. Sidney, Nat. Mater. 3(2004) 11-12.
DOI URL PMID |
[51] |
F.D. Fischer, J. Svoboda, Int. J. Plast. 27(2011) 1384-1390.
DOI URL |
[52] |
T.L. Cheng, Y.H. Wen, J.A. Hawk, Int. J. Plast. 114(2018) 106-125.
DOI URL |
[53] |
T.G. Langdon, J. Mater. Sci. 41(2006) 597-609.
DOI URL |
[54] |
S. Birosca, G. Liu, R. Ding, J. Jiang, T. Simm, C. Deen, M. Whittaker, Int. J. Plast. 118(2019) 252-268.
DOI URL |
[55] |
B. Wang, H. Idrissi, M. Galceran, M.S. Colla, S. Turner, S. Hui, J.P. Raskin, T. Pardoen, S. Godet, D. Schryvers, Int. J. Plast. 37(2012) 140-156.
DOI URL |
[56] |
R.J. Asaro, S. Suresh, Acta Mater. 53(2005) 3369-3382.
DOI URL |
[57] |
R.L. Fleischer, Acta Metall. 11(1963) 203-209.
DOI URL |
[58] |
T.J. Rupert, J.C. Trenkle, C.A. Schuh, Acta Mater. 59(2011) 1619-1631.
DOI URL |
[59] | Y.Z. Zhang, G.F. Ding, H. Wang, P. Cheng, J. Mater. Sci. Technol. 32(2016) 335-361. |
[60] | D. Tabor, J. I. Met. 79(1951) 1-18. |
[61] |
T.P. Harzer, S. Djaziri, R. Raghavan, G. Dehm, Acta Mater. 83(2015) 318-332.
DOI URL |
[62] | R.I. Babicheva, D.V. Bachurin, S.V. Dmitriev, Y. Zhang, S.W. Kok, L.C. Bai, K. Zhou, Philos. Mag. A 96 (2016) 1598-1612. |
[63] |
J. Hu, Y.N. Shi, X. Sauvage, G. Sha, K. Lu, Science 355 (2017) 1292-.
DOI URL PMID |
[64] |
H.A. Murdoch, C.A. Schuh, J. Mater. Res. 28(2013) 2154-2163.
DOI URL |
[65] |
L. Vitos, A.V. Ruban, H.L. Skriver, J. Kollar, Surf. Sci. 411(1998) 186-202.
DOI URL |
[66] |
H.A. Murdoch, C.A. Schuh, Acta Mater. 61(2013) 2121-2132.
DOI URL |
[67] |
N.Q. Vo, R.S. Averback, P. Bellon, A. Caro, Scr. Mater. 61(2009) 76-79.
DOI URL |
[68] |
S.Y. Chang, Y.S. Lee, T.K. Chang, Mater. Sci. Eng. A 423 (2006) 52-56.
DOI URL |
[69] |
W. Sun, Y. Jiang, G. Sun, J. Hu, T. Zhou, Z. Jiang, J. Lian, Mater. Sci. Eng. A 751 (2019) 35-41.
DOI URL |
[70] |
X.S. Yang, H.R. Zhai, H.H. Ruan, S.Q. Shi, T.Y. Zhang, Int. J. Plast. 104(2018) 68-79.
DOI URL |
[71] |
R.C. Picu, Acta Mater. 52(2004) 3447-3458.
DOI URL |
[72] |
H. Aboulfadl, J. Deges, P. Choi, D. Raabe, Acta Mater. 86(2015) 34-42.
DOI URL |
[73] |
M.A. Soare, W.A. Curtin, Acta Mater. 56(2008) 4046-4061.
DOI URL |
[74] | F.A. Mohamed, K.L. Murty, T.G. Langdon, Acta Metall. 7(1974) 325-332. |
[75] |
J.Y. Zhang, J.T. Zhao, X.G. Li, Y.Q. Wang, K. Wu, G. Liu, J. Sun, Acta Mater. 143(2018) 55-66.
DOI URL |
[76] |
W.A. Curtin, D.L. Olmsted, L.G. Hector Jr., Nat. Mater. 5(2006) 875-880.
DOI URL PMID |
[1] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[2] | Enkang Hao, Yulong An, Jie Chen, Xiaoqin Zhao, Guoliang Hou, Jianmin Chen, Meizhen Gao, Fengyuan Yan. In-situ formation of layer-like Ag2MoO4 induced by high-temperature oxidation and its effect on the self-lubricating properties of NiCoCrAlYTa/Ag/Mo coatings [J]. J. Mater. Sci. Technol., 2021, 75(0): 164-173. |
[3] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[4] | Jiayi Zhang, Yan Jin Lee, Hao Wang. Mechanochemical effect on the microstructure and mechanical properties in ultraprecision machining of AA6061 alloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 228-238. |
[5] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
[6] | Ruihong Wang, Shengyu Jiang, Bao’an Chen, Zhixiang Zhu. Size effect in the Al3Sc dispersoid-mediated precipitation and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. J. Mater. Sci. Technol., 2020, 57(0): 78-84. |
[7] | panelJianwei Xu, Weidong Zeng, Dadi Zhou, Wei Chen, Shengtong He, Xiaoyong Zhang. Analysis of crystallographic orientation and morphology of microstructure during hot working for an alpha/beta titanium alloy [J]. J. Mater. Sci. Technol., 2020, 59(0): 1-13. |
[8] | Zhixin Zhang, Jiangkun Fan, Bin Tang, Hongchao Kou, Jian Wang, Xin Wang, Shiying Wang, Qingjiang Wang, Zhiyong Chen, Jinshan Li. Microstructural evolution and FCC twinning behavior during hot deformation of high temperature titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2020, 49(0): 56-69. |
[9] | XiTing Zhong, Lei Wang, LinKe Huang, Feng Liu. Transition of dynamic recrystallization mechanism during hot deformation of Incoloy 028 alloy [J]. J. Mater. Sci. Technol., 2020, 42(0): 241-253. |
[10] | Jixin Yang, Yiqiang Chen, Yongjiang Huang, Zhiliang Ning, Baokun Liu, Chao Guo, Jianfei Sun. Hierarchical microstructure of a titanium alloy fabricated by electron beam selective melting [J]. J. Mater. Sci. Technol., 2020, 42(0): 1-9. |
[11] | XianCao Ping, ZhangShuang Liu, Xue-Lin Lei, Run-Zi Wang, Xian-Cheng Zhang, Shan-Tung Tu. A novel hole cold-expansion method and its effect on surface integrity of nickel-based superalloy [J]. J. Mater. Sci. Technol., 2020, 59(0): 129-137. |
[12] | Qiang Zhu, Gang Chen, Chuanjie Wang, Lukuan Cheng, Heyong Qin, Peng Zhang. Microstructure evolution and mechanical property characterization of a nickel-based superalloy at the mesoscopic scale [J]. J. Mater. Sci. Technol., 2020, 47(0): 177-189. |
[13] | Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48(0): 140-145. |
[14] | L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang, J.W. Qiao. Effect of environments and normal loads on tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys [J]. J. Mater. Sci. Technol., 2020, 42(0): 85-96. |
[15] | Pengfei Gao, Mingwang Fu, Mei Zhan, Zhenni Lei, Yanxi Li. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review [J]. J. Mater. Sci. Technol., 2020, 39(0): 56-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||