J. Mater. Sci. Technol. ›› 2020, Vol. 57: 113-122.DOI: 10.1016/j.jmst.2020.01.067
• Invited Review • Previous Articles Next Articles
Yingli Liua,b, Chen Niua, Zhuo Wangc,f,a,*(), Yong Gand, Yan Zhua, Shuhong Sune, Tao Shena,b,**(
)
Received:
2019-10-13
Accepted:
2020-01-28
Published:
2020-11-15
Online:
2020-11-20
Contact:
Zhuo Wang,Tao Shen
Yingli Liu, Chen Niu, Zhuo Wang, Yong Gan, Yan Zhu, Shuhong Sun, Tao Shen. Machine learning in materials genome initiative: A review[J]. J. Mater. Sci. Technol., 2020, 57: 113-122.
Fig. 1. The process of specific machine learning in materials science. (a) Schematic view of an example data set; (b) statement of the learning problem; (c) creation of a surrogate prediction model via the fingerprinting and learning steps [43].
Fig. 5. Mean absolute error (MAE in kcal/mol) for BoB and polynomial models: Training sets from N?=?500 to 7000 data points were sampled identically for the different methods. The polynomial models of degree 10 and 18 exhibit high variances due to the random stratification, which for small N leads to nonrobust fits [133].
Fig. 6. (Color online) EHL - α log-log plot of the molecule dataset, shown by green symbols, with the predicted fingerprints shown by red diamonds within the regime of desired properties, i.e.,0.6≤α≤0.7??3/atom and EHL≥7.0?eV. In the inset, the predicted and calculated properties of the molecules reconstructed from three predicted fingerprints, i.e., C, D, and E, are shown by solid and open symbols: triangles for C, circles for D, and squares for E. The dashed line sketches the limit α ~ 1/EHL addressed in the text [137].
Predicted | Calculated | ||||
---|---|---|---|---|---|
Label | Nat | α | EHL | α | EHL |
C | 11 | 0.689 | 7.273 | 0.654 | 7.964 |
D | 18 | 0.670 | 7.363 | 0.664-0.699 | 6.502-7.348 |
E | 14 | 0.607 | 8.612 | 0.597 | 8.909 |
Table 1 Predicted and calculated values of α (in ?3/atom) and EHL (in eV) of the molecules designed from three predicted fingerprints, C, D and E. Data from this table are also shown in the inset of Fig. 6 [137].
Predicted | Calculated | ||||
---|---|---|---|---|---|
Label | Nat | α | EHL | α | EHL |
C | 11 | 0.689 | 7.273 | 0.654 | 7.964 |
D | 18 | 0.670 | 7.363 | 0.664-0.699 | 6.502-7.348 |
E | 14 | 0.607 | 8.612 | 0.597 | 8.909 |
Fig. 7. Imaging techniques (top panels) allow direct measurements of atomic positions and hence bond lengths and angles, local functionalities including chemical states, dielectric properties, and superconductive gap, visualizing atomic, molecular, and defect dynamics in real time, and offers possibilities to control of matter on the molecular and atomic level. In parallel, theoretical methods (bottom panels) allow detailed studies of atomic and electronic structure and dynamics of matter along with prediction of their properties. However, almost lacking are the pathways to bridge theory and experiment. The new advances in data analytics and scientific inference are capable of treating large volumes of data/information and hence linking theory to experiment via microscopic degrees of freedom (middle panels). For example, efficiently matching imaging information about static structure to theoretical simulations on the same material (1?st column) or similarly, the dynamics of oxygen vacancies in materials to corresponding molecular dynamics simulation (3rd column) [4].
[1] |
N. Nosengo, G. Ceder, Nature 533 (2016) 22-25.
URL PMID |
[2] |
C. Stefano, M. Dane, P. Kristin, R. John, C. Gerbrand, Phys. Rev. Lett. 91(2003), 135503.
URL PMID |
[3] |
S. Curtarolo, W. Setyawan, G.L.W. Hart, M. Jahnatek, R.V. Chepulskii, R.H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, Comput. Mater. Sci. 58(2012) 218-226.
DOI URL |
[4] |
S.V. Kalinin, B.G. Sumpter, R.K. Archibald, Nat. Mater. 14(2015) 973-980.
DOI URL PMID |
[5] |
M. Aykol, S. Kim, V.I. Hegde, D. Snydacker, Z. Lu, S. Hao, S. Kirklin, D. Morgan, C. Wolverton, Nat. Commun. 7(2016) 13779.
DOI URL PMID |
[6] | C. Nyshadham, C. Oses, J.E. Hansen, I. Takeuchi, S. Curtarolo, G.L.W. Hart, Acta Mater. 122(2017) 438-447. |
[7] | S. Kirklin, J.E. Saal, V.I. Hegde, C. Wolverton, Acta Mater. 102(2016) 125-135. |
[8] | L. Ward, R. Liu, A. Krishna, V.I. Hegde, A. Agrawal, A. Choudhary, C. Wolverton, Phys. Rev. B 96 (2017), 024104. |
[9] | S.R. Kalidindi, D.B. Brough, S. Li, A. Cecen, A.L. Blekh, F.Y.P. Congo, C. Campbell, MRS Bull. 41(2016) 596-602. |
[10] | C. Kim, G. Pilania, R. Ramprasad, Chem. Mater. 28(2016) 1304-1311. |
[11] |
M.I. Jordan, T.M. Mitchell, Science 349 (2015) 255-260.
DOI URL PMID |
[12] | N. Wagner, J.M. Rondinelli, Front. Mater. 3(2016) 28. |
[13] | W. Lu, R. Xiao, J. Yang, H. Li, W. Zhang, J. Materiomics 3 (2017) 191-201. |
[14] | Z. Yang, Y.C. Yabansu, R. Al-Bahrani, W.K. Liao, A.N. Choudhary, S.R. Kalidindi, A. Agrawal, Comput. Mater. Sci. 151(2018) 278-287. |
[15] | M.A. Remita, A. Halioui, A.A. Malick Diouara, B. Daigle, G. Kiani, A. Diallo, BMC Bioinf. 18(2017) 208. |
[16] | T. Zheng, W. Xie, L. Xu, X. He, Y. Zhang, M. You, G. Yang, Int. J. Med. Inform. 97(2017) 120-127. |
[17] | H. Kaneko, Chemometr. Intell. Lab. 177(2018) 74-82. |
[18] | F. Garcia-Papani, V. Leiva, M.A. Uribe-Opazo, R.G. Aykroyd, Chemometr. Intell. Lab. 177(2018) 114-128. |
[19] | D. Ye, L. Sun, W. Tan, W. Che, M. Yang, Chemometr. Intell. Lab. 177(2018) 129-139. |
[20] | Y. Liu, T. Zhao, W. Ju, S. Shi, J. Materiomics 3 (2017) 159-177. |
[21] | L. Ward, C. Wolverton, Curr. Opin. Solid State Mater.Sci. 21(2017) 167-176. |
[22] | P.M. Voyles, Curr. Opin. Solid State Mater.Sci. 21(2017) 141-158. |
[23] |
P. Raccuglia, K.C. Elbert, P.D. Adler, C. Falk, M.B. Wenny, A. Mollo, M. Zeller, S.A. Friedler, J. Schrier, A.J. Norquist, Nature 533 (2016) 73-77.
URL PMID |
[24] | J.G.P. Wicker, R.I. Cooper, CrystEngComm 17 (2015) 1927-1934. |
[25] | M. Rupp, Int. J. Quantum Chem. 115(2015) 1058-1073. |
[26] | V. Stanev, C. Oses, A.G. Kusne, E. Rodriguez, J. Paglione, S. Curtarolo, I. Takeuchi, npj Comput.Mater. 4(2018) 1-14. |
[27] | J. Behler, M. Parrinello, Phys. Rev. Lett. 98(2007), 146401. |
[28] | N. Artrith, A. Urban, Comput. Mater. Sci. 114(2016) 135-150. |
[29] | S. Lorenz, A. Groß, M. Scheffler, Chem.Phys. Lett. 395(2004) 210-215. |
[30] | Z. Deng, H. Yin, X. Jiang, C. Zhang, K. Zhang, T. Zhang, B. Xu, Q. Zheng, X. Qu, Comput. Mater. Sci. 155(2018) 48-54. |
[31] | L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, C. Draxl, M. Scheffler,Phys.Rev. Lett. 114(2015), 105503. |
[32] |
J. Lee, A. Seko, K. Shitara, K. Nakayama, I. Tanaka, Phys. Rev. B 93 (2016), 115104.
DOI URL |
[33] |
G. Pilania, A. Mannodi-Kanakkithodi, B.P. Uberuaga, R. Ramprasad, J.E. Gubernatis, T. Lookman, Sci. Rep. 6(2016) 19375.
DOI URL PMID |
[34] | J. Behler, R. Martonak, D. Donadio, M. Parrinello, Phys. Rev. Lett. 100(2008), 185501. |
[35] | J. Behler, R. Martoňák, D. Donadio, M. Parrinello, Phys. Status Solidi B 245 (2008) 2618-2629. |
[36] | R.H. Taylor, F. Rose, C. Toher, O. Levy, K. Yang, M. Buongiorno Nardelli, S. Curtarolo, Comput. Mater. Sci. 93(2014) 178-192. |
[37] | R. Jose, S. Ramakrishna, Appl. Mater. Today 10 (2018) 127-132. |
[38] | A. Agrawal, A. Choudhary, APL Mater. 4(2016), 053208. |
[39] |
D.B. Brough, D. Wheeler, S.R. Kalidindi, Integr. Mater. Manuf. Innov. 6(2017) 36-53.
URL PMID |
[40] | B. Meredig, Curr. Opin. Solid State Mater.Sci. 21(2017) 159-166. |
[41] | M.L. Green, C.L. Choi, J.R. Hattrick-Simpers, A.M. Joshi, I. Takeuchi, S.C. Barron, E. Campo, T. Chiang, S. Empedocles, J.M. Gregoire, A.G. Kusne, J. Martin, A. Mehta, K. Persson, Z. Trautt, J. Van Duren, A. Zakutayev,Appl. Phys. Rev. 4(2017), 011105. |
[42] | E. Kim, K. Huang, A. Saunders, A. Mccallum, G. Ceder, E. Olivetti, Chem. Mater. 29(2017) 9436-9444. |
[43] | R. Ramprasad, R. Batra, G. Pilania, A. Mannodikanakkithodi, C. Kim, npj Comput.Mater. 54(2017) 1-13. |
[44] | A. Jain, K.A. Persson, G. Ceder, APL Mater. 4(2016), 053102. |
[45] | G. Bergerhoff, R. Hundt, R. Sievers, J. Chem. Inf. Comput. Sci. 23(1983) 66-69. |
[46] | B. Alec, H. Mariette, K. Vicky Lynn, L. Peter, Acta Crystallogr. Sect. B-Struct. Sci. 58(2002) 364-369. |
[47] | S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rühl, C. Wolverton, npj Comput. Mater. (2015) 1-15. |
[48] | F.H. Allen, Acta Crystallogr, Sect. B-Struct. Sci. 58(2002) 380-388. |
[49] | Cambridge Structural Database (CSD), 2019, November 12 https://www.lib. ncsu.edu/databases/cambridge-structural.html. |
[50] | A. Jain, S.P. Ong, G. Hautier, C. Wei, W.D. Richards, S. Dacek, S. Cholia, G. Dan, D. Skinner, G. Ceder, APL Mater. 1(2013) 1-11. |
[51] | E. Kim, K. Huang, S. Jegelka, E. Olivetti, npj Comput.Mater. 3(2017) 1-9. |
[52] | The Materials Project, 2019, September 18 https://www.materialsproject. org. |
[53] | S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, G.L. Hart, S. Sanvito, M.B. Nardelli, N. Mingo, Comput. Mater. Sci. 58(2012) 227-235. |
[54] | C. Oses, C. Toher, S. Curtarolo, MRS Bull. 43(2018) 670-675. |
[55] | J. O’Mara, B. Meredig, K. Michel, JOM 68 (2016) 2031-2034. |
[56] | E.O. Pyzer-Knapp, K. Li, A. Aspuru-Guzik, Adv. Funct. Mater. 25(2015) 6495-6502. |
[57] | J. Hachmann, R. Olivares-Amaya, A. Jinich, A.L. Appleton, M.A. Blood-Forsythe, L.R. Seress, C. Román-Salgado, K. Trepte, S. Atahan-Evrenk, S. Er, S. Shrestha, R. Mondal, A. Sokolov, Z. Bao, A. Aspuru-Guzik, Energy Environ. Sci. 7(2014) 698-704. |
[58] | Material Property Data(MatWeb), 2019, September 18 http://www.matweb. com. |
[59] | Total Materia, 2019, November 12 https://www.totalmateria.com/. |
[60] | ASM International, 2019, November 12 https://www.asminternational.org/. |
[61] | D.D. Landis, J.S. Hummelshøj, S. Nestorov, J. Greeley, K.W. Jacobsen, Comput. Sci. Eng. 14(2012) 51-57. |
[62] | NIMS Materials Database (Mat Navi), 2019, September 18 https://mits.nims. go.jp/index en.html. |
[63] | B. Blaiszik, K. Chard, J. Pruyne, R. Ananthakrishnan, S. Tuecke, I. Foster, JOM 68 (2016) 2045-2052. |
[64] | Interatomic Potentials (force Fields) Databases (NIST), 2019, September 18 https://www.ctcms.nist.gov/potentials. |
[65] | Superconducting Material Database (SuperCon), 2019, November 12 https://supercon.nims.go.jp/. |
[66] | B. Puchala, G. Tarcea, E.A. Marquis, M. Hedstrom, H.V. Jagadish, J.E. Allison, JOM 68 (2016) 2035-2044. |
[67] | M.D. Jacobsen, J.R. Fourman, K.M. Porter, E.A. Wirrig, M.D. Benedict, B.J. Foster, C.H. Ward, Integrat. Mater. Manuf. Innov. 5(2016) 12. |
[68] | A.A. Salem, J.B. Shaffer, R.A. Kublik, L.A. Wuertemberger, D.P. Satko, Integr. Mater. Manuf. Innov. 6(2017) 111-126. |
[69] | Q. Zhang, D. Chang, X. Zhai, W. Lu, Chemometr. Intell. Lab. 177(2018) 26-34. |
[70] | G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, B. Kozinsky, Comput. Mater. Sci. 111(2016) 218-230. |
[71] | X. Yang, Z. Wang, X. Zhao, J. Song, M. Zhang, H. Liu, Comput. Mater. Sci. 146(2018) 319-333. |
[72] | Software Package VNL, 2019, September 18 https://www.quantumwise. com/products/vnl. |
[73] | L.M. Ghiringhelli, J. Vybiral, E. Ahmetcik, R. Ouyang, S.V. Levchenko, C. Draxl, M. Scheffler, NJPh 19 (2017), 023017. |
[74] |
D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Nature 550 (2017) 354-359.
DOI URL PMID |
[75] | A. Jha, A. Chandrasekaran, C. Kim, R. Ramprasad, Modell. Simul. Mater. Sci. Eng. 27(2019), 024002. |
[76] | T.N. Bhat, L.M. Bartolo, U.R. Kattner, C.E. Campbell, J.T. Elliott, JOM 67 (2015) 1866-1875. |
[77] | S. Pattanayak, S. Dey, S. Chatterjee, S.G. Chowdhury, S. Datta, Comput. Mater. Sci. 104(2015) 60-68. |
[78] |
P.V. Balachandran, J. Theiler, J.M. Rondinelli, T. Lookman, Sci. Rep. 5(2015) 13285.
DOI URL PMID |
[79] | F. Faber, A. Lindmaa, O.A. von Lilienfeld, R. Armiento, Int. J. Quantum Chem. 115(2015) 1094-1101. |
[80] | T. Varol, A. Canakci, S. Ozsahin, Compos. Part. B-Eng. 54(2013) 224-233. |
[81] | A. Canakci, T. Varol, S. Ozsahin, Met. Mater. Int. 19(2013) 519-526. |
[82] | A.J.A. Al-Jabar, M.A.A. Al-dujaili, I.A.D. Al-hydary, Appl. Phys. A 123 (2017) 273-274. |
[83] | G. Pilania, P.V. Balachandran, C. Kim, T. Lookman, Front. Mater. 3(2016) 1-7. |
[84] |
A.P. Bartok, M.C. Payne, R. Kondor, G. Csanyi, Phys. Rev. Lett. 104(2010), 136403.
URL PMID |
[85] | J.R. Hattrick-Simpers, J.M. Gregoire, A.G. Kusne, APL Mater. 4(2016), 2832-2522. |
[86] | J.K. Bunn, S. Han, Y. Zhang, Y. Tong, J. Hu, J.R. Hattrick-Simpers, J.Mater. Res. 30(2015) 879-889. |
[87] | B. Meredig, A. Agrawal, S. Kirklin, J.E. Saal, J.W. Doak, A. Thompson, K. Zhang, A. Choudhary, C. Wolverton, Phys. Rev. B 89 (2014) 82-84. |
[88] | G. Dhaliwal, P.B. Nair, C.V. Singh, Carbon 142 (2019) 300-310. |
[89] |
S.R. Kalidindi, J.A. Gomberg, Z.T. Trautt, C.A. Becker, Nanotechnology 26 (2015), 344006.
DOI URL PMID |
[90] | T. Lookman, P.V. Balachandran, D. Xue, J. Hogden, J. Theiler, Curr. Opin. Solid State Mater.Sci. 21(2017) 121-128. |
[91] |
P. Ghanshyam, C. Wang, X. Jiang, R. Sanguthevar, R. Ramamurthy, Sci. Rep. 3(2013) 2810.
DOI URL PMID |
[92] | F. Niu, C. Zhang, C. Ré, J. Shavlik, Int. J. Semant. Web Inf.Syst. 8(2012) 42-73. |
[93] | O.M. Tzuc, A. Bassam, M. Abatal, Y.E. Hamzaoui, Chemometr. Intell. Lab. 177(2018) 151-162. |
[94] |
T.C. Le, D.A. Winkler, Chem. Rev. 116(2016) 6107-6132.
URL PMID |
[95] | A. Jain, G. Hautier, S.P. Ong, K. Persson, J. Mater. Res. 31(2016) 977-994. |
[96] | L. Ward, A. Dunn, A. Faghaninia, N.E.R. Zimmermann, S. Bajaj, Q. Wang, J. Montoya, J. Chen, K. Bystrom, M. Dylla, Comput. Mater. Sci. 152(2018) 60-69. |
[97] | B. Hu, K. Lu, Q. Zhang, X. Ji, W. Lu, Comput. Mater. Sci. 136(2017) 29-35. |
[98] |
S. Srinivasan, K. Rajan, Materials 6 (2013) 279-290.
DOI URL PMID |
[99] |
N. Artrith, A. Urban, G. Ceder, J. Chem. Phys. 148(2018), 241711.
DOI URL PMID |
[100] | M. Spellings, S.C. Glotzer, AIChE J. 64(2018) 2198-2206. |
[101] | L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, npj Comput.Mater. 2(2016) 16028. |
[102] | G. Pilania, T. Lookman, J.E. Gubernatis, Phys. Rev. B 91 (2015), 214302. |
[103] | K.T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K.R. Müller, E.K.U. Gross, Phys. Rev. B 89 (2014), 205118. |
[104] |
F. Faber, A. Lindmaa, O.A.V. Lilienfeld, R. Armiento, Phys. Rev. Lett. 117(2016), 135502.
DOI URL PMID |
[105] |
C.S. Kong, W. Luo, S. Arapan, P. Villars, S. Iwata, R. Ahuja, K. Rajan, J. Chem. Inf. Model. 52(2012) 1812-1820.
DOI URL PMID |
[106] | B. Medasani, A. Gamst, H. Ding, W. Chen, K.A. Persson, M. Asta, A. Canning, M. Haranczyk, npj Comput. Mater. 2 (2016). |
[107] | C. Bertinetto, C. Duce, A. Micheli, R. Solaro, A. Starita, M.R. Tiné, J. Mol. Model. 27(2009) 797-802. |
[108] | G.V.S.M. Carrera, L.C. Branco, J. Aires-De-Sousa, C.A.M. Afonso, Tetrahcdron 64 (2008) 2216-2224. |
[109] |
R. Koker, N. Altinkok, A. Demir, Mater. Des. 28(2007) 616-627.
DOI URL |
[110] |
N. Altinkok, R. Koker, Mater. Des. 25(2004) 595-602.
DOI URL |
[111] |
E. Akbari, Z. Buntat, A. Enzevaee, S.J. Mirazimiabarghouei, M. Bahadoran, A. Shahidi, A. Nikoukar, RSC Adv. 4(2014) 36896-36904.
DOI URL |
[112] |
S. Mercier, I. Uysal, Chemometr. Intell. Lab. 177(2018) 1-7.
DOI URL |
[113] |
H.K.D.H. Bhadeshia, Stat. Anal. Data Min. 1(2009) 296-305.
DOI URL |
[114] |
M. Paliwal, U.A. Kumar, Expert Syst. Appl. 36(2009) 2-17.
DOI URL |
[115] |
T. Bhattacharyya, S.B. Singh, S. Das, A. Haldar, D. Bhattacharjee, Mater. Sci. Eng. A 528 (2011) 2394-2400.
DOI URL |
[116] | B. Kim, K. Kwon, IEEE Trans. Semicond. Manuf. 44(1998) 692-695. |
[117] | G. Dini, A. Najafizadeh, S.M. Monir-Vaghefi, A.Ebnonnasir, Comput. Mater. Sci. 45(2009) 959-965. |
[118] |
A. Shafyei, S.H. Mousavi Anijdan, A. Bahrami, Mater. Sci. Eng. A 431 (2006) 206-210.
DOI URL |
[119] |
S.H. Mousavi Anijdan, A. Bahrami, H.R. Madaah Hosseini, A. Shafyei, Mater. Des. 27(2006) 605-609.
DOI URL |
[120] |
R. Tuntas, B. Dikici, J. Compos. Mater. 49(2015) 3431-3438.
DOI URL |
[121] |
M.O. Shabani, A. Mazahery, Appl. Math. Model. 35(2011) 5707-5713.
DOI URL |
[122] |
M.O. Shabani, A. Mazahery, Metall. Mater. Trans. A 43 (2012) 2158-2165.
DOI URL |
[123] |
A. Mannodikanakkithodi, G. Pilania, T.D. Huan, Sci. Rep. 6(2016) 20952.
DOI URL PMID |
[124] |
A. Seko, T. Maekawa, K. Tsuda, I. Tanaka, Phys. Rev. B 89 (2014), 054303.
DOI URL |
[125] |
J.C. Mauro, A. Tandia, K.D. Vargheese, Y.Z. Mauro, M.M. Smedskjaer, Chem. Mater. 28(2016) 4267-4277.
DOI URL |
[126] |
G. Pilania, X.Y. Liu, J. Mater. Sci. 53(2018) 6652-6664.
DOI URL |
[127] |
K. Toyoura, D. Hirano, A. Seko, M. Shiga, A. Kuwabara, M. Karasuyama, K. Shitara, I. Takeuchi, Phys. Rev. B 93 (2016), 054112.
DOI URL |
[128] |
L. Petrich, D. Westhoff, J. Feinauer, D.P. Finegan, S.R. Daemi, P.R. Shearing, V. Schmidt, Comput. Mater. Sci. 136(2017) 297-305.
DOI URL |
[129] |
V.L. Deringer, G. Csányi, Phys. Rev. B 95 (2017), 094203.
DOI URL |
[130] |
V. Botu, J. Chapman, R. Ramprasad, Comput. Mater. Sci. 129(2017) 332-335.
DOI URL |
[131] | M. Rupp, A. Tkatchenko, K.R. Muller, O.A. von Lilienfeld, Phys.Rev. Lett. 108(2012), 058301. |
[132] |
K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O.A. von Lilienfeld, A. Tkatchenko, K.-R. Müller, J. Chem. Theory Comput. 9(2013) 3404-3419.
DOI URL PMID |
[133] |
K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O.A. von Lilienfeld, K.R. Muller, A. Tkatchenko, J. Phys. Chem. Lett. 6(2015) 2326-2331.
DOI URL PMID |
[134] |
O. Isayev, C. Oses, C. Toher, E. Gossett, S. Curtarolo, A. Tropsha, Nat. Commun. 8(2017) 15679.
DOI URL PMID |
[135] |
O. Isayev, D. Fourches, E.N. Muratov, C. Oses, K. Rasch, A. Tropsha, S. Curtarolo, Chem. Mater. 27(2014) 735-743.
DOI URL |
[136] |
M. Nuñez, Comput. Mater. Sci. 158(2019) 117-123.
DOI URL |
[137] |
T.D. Huan, A. Mannodi-Kanakkithodi, R. Ramprasad, Phys. Rev. B 92 (2015), 014106.
DOI URL |
[138] |
A.O. Oliynyk, A. Mar, Acc Chem. Res. 51(2018) 59-68.
DOI URL PMID |
[139] | D. Xue, P.V. Balachandran, H. John, T. James, D. Xue, L. Turab, Nat. Commun. 7(2016) 1-9. |
[140] |
F. Ren, L. Ward, T. Williams, K.J. Laws, C. Wolverton, J. Hattricksimpers, A. Mehta, Sci. Adv. 4 (2018), eaaq1566.
DOI URL PMID |
[141] |
R. Yuan, Z. Liu, P.V. Balachandran, D. Xue, Y. Zhou, X. Ding, J. Sun, D. Xue, T. Lookman, Adv. Mater. 30(2018), 1702884.
DOI URL |
[142] | G. Pilania, P.V. Balachandran, J.E. Gubernatis, T. Lookman, Acta Crystallogr. 71(2015) 507-513. |
[143] |
L.C. Lin, A.H. Berger, R.L. Martin, J. Kim, J.A. Swisher, K. Jariwala, C.H. Rycroft, A.S. Bhown, M.W. Deem, M. Haranczyk, Nat. Mater. 11(2012) 633-641.
DOI URL PMID |
[144] |
C.E. Wilmer, M. Leaf, Y.L. Chang, O.K. Farha, B.G. Hauser, J.T. Hupp, R.Q. Snurr, Nat. Chem. 4(2012) 83-89.
DOI URL PMID |
[145] |
J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, J.K. Nørskov, Nat. Mater. 5(2006) 909-913.
DOI URL PMID |
[146] |
W.T. Hong, R.E. Welsch, S.-H. Yang, J. Phys. Chem. C 120 (2016) 78-86.
DOI URL |
[147] |
R. Gómezbombarelli, J. Aguileraiparraguirre, T.D. Hirzel, D. Duvenaud, D. Maclaurin, M.A. Bloodforsythe, H.S. Chae, M. Einzinger, D.G. Ha, T. Wu, Nat. Mater. 15(2016) 1120-1127.
DOI URL PMID |
[148] |
T.D. Sparks, M.W. Gaultois, A. Oliynyk, J. Brgoch, B. Meredig, Scr. Mater. 111(2016) 10-15.
DOI URL |
[149] |
A.O. Oliynyk, E. Antono, T.D. Sparks, L. Ghadbeigi, M.W. Gaultois, B. Meredig, A. Mar, Chem. Mater. 28(2016) 7324-7331.
DOI URL |
[150] |
J. Yan, P. Gorai, B. Ortiz, S. Miller, S.A. Barnett, T. Mason, V. Stevanovi´c, E.S. Toberer, Energy Environ. Sci. 8(2015) 983-994.
DOI URL |
[151] |
R. Seshadri, T.D. Sparks, APL Mater. 4(2016), 053206.
DOI URL |
[152] |
S. Kiyohara, H. Oda, T. Miyata, T. Mizoguchi, Sci. Adv. 2(2016), e1600746-e1600746.
DOI URL PMID |
[153] | Y. Zhang, C. Ling, npj Comput.Mater. 4(2018) 25. |
[154] |
M. Krallinger, O. Rabal, A. Lourenco, J. Oyarzabal, A. Valencia, Chem. Rev. 117(2017) 7673-7761.
DOI URL PMID |
[155] | Z. Lu, L. Hirschman, DatabaseOxford (Oxford) 2012 (2012), bas043. |
[156] |
C.H. Wei, H.Y. Kao, Z. Lu, Nucleic Acids Res. 41(2013) W518-W522.
DOI URL PMID |
[157] |
W. Chih-Hsuan, K.H. Yu, L. Zhiyong, Nucleic Acids Res. 41(2013) 518-522.
DOI URL PMID |
[158] | Paper Information Assisted Extraction Software, 2019, November 12 https://www.mgedata.cn. |
[159] | C. Wang, H. Fu, L. Jiang, D. Xue, J. Xie, npj Comput.Mater. 5(2019) 87. |
[160] |
O. Kononova, H. Huo, T. He, Z. Rong, T. Botari, W. Sun, V. Tshitoyan, G. Ceder, Sci. Data 6 (2019) 203.
DOI URL PMID |
[1] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[2] | Fu-Zhi Dai, Yinjie Sun, Bo Wen, Huimin Xiang, Yanchun Zhou. Temperature Dependent Thermal and Elastic Properties of High Entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2: Molecular Dynamics Simulation by Deep Learning Potential [J]. J. Mater. Sci. Technol., 2021, 72(0): 8-15. |
[3] | Jia Li, Baobin Xie, Qihong Fang, Bin Liu, Yong Liu, Peter K. Liaw. High-throughput simulation combined machine learning search for optimum elemental composition in medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 70-75. |
[4] | Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential [J]. J. Mater. Sci. Technol., 2020, 43(0): 168-174. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||