J. Mater. Sci. Technol. ›› 2021, Vol. 76: 166-173.DOI: 10.1016/j.jmst.2020.11.001
• Research Article • Previous Articles Next Articles
Xiankai Fu, Bo Yang, Wanqi Chen, Zongbin Li, Haile Yan, Xiang Zhao, Liang Zuo*()
Received:
2020-04-12
Revised:
2020-06-06
Accepted:
2020-09-04
Published:
2021-06-20
Online:
2020-11-06
Contact:
Liang Zuo
About author:
*E-mail address: lzuo@mail.neu.edu.cn (L. Zuo).Xiankai Fu, Bo Yang, Wanqi Chen, Zongbin Li, Haile Yan, Xiang Zhao, Liang Zuo. Electromagnetic wave absorption performance of Ti2O3 and vacancy enhancement effective bandwidth[J]. J. Mater. Sci. Technol., 2021, 76: 166-173.
Fig. 5. The structure models for (a) Ti2O3, (b) Ti2O3 with 3.33 at.% oxygen vacancy, and (c) Ti2O3 with 6.67 at.% oxygen vacancy. The front views of charge density difference for (d) Ti2O3, (e) Ti2O3 with 3.33 at.% oxygen vacancy, and (f) Ti2O3 with 6.67 at.% oxygen vacancy.
Fig. 6. The top views of electron density configuration for (a) Ti2O3, (b) Ti2O3 with 3.33 at.% oxygen vacancy, and (c) Ti2O3 with 6.67 at.% oxygen vacancy. The top views of charge density difference for (d) Ti2O3, (e) Ti2O3 with 3.33 at.% oxygen vacancy, and (f) Ti2O3 with 6.67 at.% oxygen vacancy.
[1] |
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Science, 353 (2016), pp. 1137-1140
DOI URL |
[2] |
Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, Y. Chen, Adv. Mater., 27 (2015), pp. 2049-2053
DOI URL |
[3] |
F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang, X. Yin, Y. Zhou, H. Tao, Y. Liu, L. Cheng, L. Zhang, H. Li, Adv. Funct. Mater., 28 (2018), 1707205
DOI URL |
[4] |
Q. Song, F. Ye, X. Yin, W. Li, H. Li, Y. Liu, K. Li, K. Xie, X. Li, Q. Fu, L. Cheng, L. Zhang, B. Wei, Adv. Mater., 29 (2017), 1701583
DOI URL |
[5] |
X.J. Zhang, J.Q. Zhu, P.G. Yin, A.P. Guo, A.P. Huang, L. Guo, G.S. Wang, Adv. Funct. Mater., 28 (2018), 1800761
DOI URL |
[6] |
X. Shi, Z. Liu, W. You, X. Zhao, R. Che, J. Mater. Chem. C, 6 (2018), pp. 7790-7796
DOI URL |
[7] |
Y. Yin, X. Liu, X. Wei, Y. Li, X. Nie, R. Yu, J. Shui, ACS Appl. Mater. Interfaces, 9 (2017), pp. 30850-30861
DOI URL |
[8] |
Y. Ding, Z. Zhang, B. Luo, Q. Liao, S. Liu, Y. Liu, Y. Zhang, Nano Res., 10 (2017), pp. 980-990
DOI URL |
[9] |
M.M. Lu, M.S. Cao, Y.H. Chen, W.Q. Cao, J. Liu, H.L. Shi, D.Q. Zhang, W.Z. Wang, J. Yuan, ACS Appl. Mater. Interfaces, 7 (2017), pp. 19408-19415
DOI URL |
[10] |
H. Sun, R.C. Che, X. You, Y.S. Jiang, Z.B. Yang, J. Deng, L.B. Qiu, H.S. Peng, Adv. Mater., 26 (2014), pp. 8120-8125
DOI URL |
[11] |
R. Qiang, Y.C. Du, H.T. Zhao, Y. Wang, C.H. Tian, Z.G. Li, X.J. Han, P. Xu, J. Mater. Chem. A, 3 (2015), pp. 13426-13434
DOI URL |
[12] |
S. Wei, X.X. Wang, Y.W. Zheng, T. Chen, C.L. Zhou, S.G. Chen, J.Q. Liu, Chem. Eur. J., 25 (2019), pp. 7695-7701
DOI URL |
[13] |
X. Hao, X. Yin, L. Zhang, L. Cheng, J. Mater. Sci. Technol., 29 (2013), pp. 249-254
DOI URL |
[14] |
X. Liu, X. Yin, W. Duan, F. Ye, X. Li, J. Mater. Sci. Technol., 35 (2019), pp. 2832-2839
DOI URL |
[15] |
P. Wang, J. Zhang, G. Wang, B. Duan, D. He, T. Wang, F. Li, J. Mater. Sci. Technol., 35 (2019), pp. 1931-1939
DOI URL |
[16] |
J.W. Liu, J.J. Xu, R.C. Che, H.J. Chen, M.M. Liu, Z.W. Liu, Chem. Eur. J., 19 (2013), pp. 6746-6752
DOI URL |
[17] |
F. Ye, L. Zhang, X. Yin, Y. Liu, L. Cheng, J. Mater. Sci. Technol., 29 (2013), pp. 55-58
DOI URL |
[18] |
L. Liu, X. Chen, J. Wang, L. Qiao, S. Gao, K. Song, C. Zhao, X. Liu, D. Zhao, F. Pan, J. Mater. Sci. Technol., 35 (2019), pp. 1074-1080
DOI URL |
[19] |
W. Yue, Y. Liu, M. Zhang, F. Ye, L. Cheng, J. Mater. Sci. Technol., 35 (2019), pp. 2897-2905
DOI URL |
[20] |
C.H. Zhou, C. Wu, D. Liu, M. Yan, Chem. Eur. J., 25 (2019), pp. 2234-2241
DOI URL |
[21] |
G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Chem. Mater., 23 (2011), pp. 1587-1593
DOI URL |
[22] |
H. Wu, G. Wu, L. Wang, Powder Technol., 269 (2015), pp. 443-451
DOI URL |
[23] |
H. Wu, J. Liu, H. Liang, D. Zang, Chem. Eng. J., 393 (2020), 124743
DOI URL |
[24] |
J.C. Shu, M.S. Cao, M. Zhang, X.X. Wang, W.Q. Cao, X.Y. Fang, M.Q. Cao, Adv. Funct. Mater., 30 (2020), 1908299
DOI URL |
[25] |
B. Zhao, J. Deng, L. Liang, C. Zuo, Z. Bai, X. Guo, R. Zhang, CrystEngComm, 19 (2017), pp. 6095-6106
DOI URL |
[26] |
Y. Li, J. Zhang, Z. Liu, M. Liu, H. Lin, R. Che, J. Mater. Chem. C, 2 (2014), pp. 5216-5222
DOI URL |
[27] |
P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, H. Lv, L.B. Kong, ACS Appl. Mater. Interfaces, 9 (2017), pp. 16404-16416
DOI URL |
[28] |
H. Yang, M. Cao, Y. Li, H. Shi, Z. Hou, X. Fang, H. Jin, W. Wang, J. Yuan, Adv. Opt. Mater., 2 (2014), pp. 214-219
DOI URL |
[29] |
T. Xia, C. Zhang, N.A. Oyler, X. Chen, Adv. Mater., 25 (2013), pp. 6905-6910
DOI URL |
[30] |
Y.Y. Li, Z.G. Yu, L. Wang, Y.K. Weng, C.S. Tang, X.M. Yin, K. Han, H.J. Wu, X.J. Yu, L.M. Wong, D.Y. Wan, X.R. Wang, J.W. Chai, Y.W. Zhang, S.J. Wang, J. Wang, A.T.S. Wee, M.B.H. Breese, S.J. Pennycook, T. Venkatesan, S. Dong, J.M. Xue, J.S. Chen, Nat. Commun., 10 (2019), p. 3149
DOI URL |
[31] |
X.F. Zhang, J.J. Guo, P.F. Guan, G.W. Qin, S.J. Pennycook, Phys. Rev. Lett., 115 (2015), 147601
DOI URL |
[32] |
P.C.P. Watts, W.K. Hsu, A. Barnes, B. Chambers, Adv. Mater., 15 (2003), pp. 600-603
DOI URL |
[33] |
A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H.M. Glarum, T.T. Palstra, A.P. Ramirez, A.R. Kortan, Nature, 350 (1991), p. 600
DOI URL |
[34] |
A.R. Kortan, N. Kopylov, S. Glarum, E.M. Gyorgy, A.P. Ramirez, R.M. Fleming, F.A. Thiel, R.C. Haddon, Nature, 355 (1992), p. 529
DOI URL |
[35] |
W. Zhou, J. Lee, J. Nanda, S.T. Pantelides, S.J. Pennycook, J.C. Idrobo, Nat. Nanotechnol., 7 (2012), p. 161
DOI PMID |
[36] |
Y. Li, Q. Tan, H. Qin, D. Xing, Appl. Phys. Lett., 115 (2019), 073701
DOI URL |
[37] |
H. Wei, X. Yin, X. Li, M. Li, X. Dang, L. Zhang, L. Cheng, Carbon, 147 (2019), pp. 276-283
DOI URL |
[38] |
L. Wang, X. Li, Q. Li, X. Yu, Y. Zhao, J. Zhang, M. Wang, R. Che, Small, 15 (2019), 1900900
DOI PMID |
[39] |
Z. Wang, P. Zhao, P. Li, S. Li, L. Liao, Y. Luo, Z. Peng, D. He, Y. Cheng, Compos. B: Eng., 167 (2019), pp. 477-486
DOI URL |
[40] |
O. Balci, E.O. Polat, N. Kakenov, C. Kocabas, Nat. Commun., 6 (2015), p. 6628
DOI URL |
[41] |
B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, J. Yuan, Adv. Mater., 26 (2014), pp. 3484-3489
DOI URL |
[42] |
M. Zhang, X.X. Wang, W.Q. Cao, J. Yuan, M.S. Cao, Adv. Opt. Mater., 7 (2019), 1900689
DOI URL |
[43] |
M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, Carbon, 48 (2010), pp. 788-796
DOI URL |
[44] |
W.Q. Cao, X.X. Wang, J. Yuan, W.Z. Wang, M.S. Cao, J. Mater. Chem. C, 3 (2015), pp. 10017-10022
DOI URL |
[45] |
J. Feng, Z.B. Li, Y.S. Jia, B. Yang, S.J. Liu, X. Zhao, L.W. Li, L. Zuo, J. Mater. Sci., 53 (2018), pp. 11779-11790
DOI URL |
[46] |
H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, J. Mater. Chem. C, 3 (2015), pp. 7677-7690
DOI URL |
[47] | D. Lan, M. Qin, J. Liu, G. Wu, Y. Zhang, H. Wu, Chem. Eng. J., 382 (2020), Article 122797 |
[48] |
H.J. Yang, J. Yuan, Y. Li, Z.L. Hou, H.B. Jin, X.Y. Fang, M.S. Cao, Solid State Commun., 163 (2013), pp. 1-6
DOI URL |
[49] |
G. Kresse, J. Furthmuller, Phys. Rev. B, 54 (1996), pp. 11169-11186
DOI URL |
[50] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77 (1996), pp. 3865-3868
DOI URL |
[51] |
P.E. Blochl, Phys. Rev. B, 50 (1994), pp. 17953-17979
DOI URL |
[52] |
H.J. Monkhorst, J.D. Pack, Phys. Rev. B, 13 (1976), pp. 5188-5192
DOI URL |
[53] |
N. Li, G.W. Huang, Y.Q. Li, H.M. Xiao, Q.P. Feng, N. Hu, S.Y. Fu, ACS Appl. Mater. Interfaces, 9 (2017), pp. 2973-2983
DOI URL |
[54] |
D. Micheli, C. Apollo, R. Pastore, M. Marchetti, Compos. Sci. Technol., 70 (2010), pp. 400-409
DOI URL |
[55] |
T. Liu, X. Xie, Y. Pang, S. Kobayashi, J. Mater. Chem. C, 4 (2016), pp. 1727-1735
DOI URL |
[56] |
Y. Li, R. Liu, X. Pang, X. Zhao, Y. Zhang, G. Qin, X. Zhang, Carbon, 126 (2018), pp. 372-381
DOI URL |
[57] |
Y. Li, X. Liu, R. Liu, X. Pang, Y. Zhang, G. Qin, X. Zhang, Carbon, 139 (2018), pp. 181-188
DOI URL |
[58] |
P. Liu, Y. Huang, J. Yan, Y. Yang, Y. Zhao, ACS Appl. Mater. Interfaces, 8 (2016), pp. 5536-5546
DOI URL |
[1] | Yanchun Zhou, Biao Zhao, Heng Chen, Huimin Xiang, Fu-Zi Dai, Shijiang Wu, Wei Xu. Electromagnetic wave absorbing properties of TMCs (TM=Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C [J]. J. Mater. Sci. Technol., 2021, 74(0): 105-118. |
[2] | Weichao Bao, Stuart Robertson, Jia-Wei Zhao, Ji-Xuan Liu, Houzheng Wu, Guo-Jun Zhang, Fangfang Xu. Structural integrity and damage of ZrB2 ceramics after 4 MeV Au ions irradiation [J]. J. Mater. Sci. Technol., 2021, 72(0): 223-230. |
[3] | Wang Yang, Bo Jiang, Zhihui Liu, Rui Li, Liqiang Hou, Zhengxuan Li, Yongli Duan, Xingru Yan, Fan Yang, Yongfeng Li. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 70(0): 214-223. |
[4] | Minghang Li, Xiaomeng Fan, Hailong Xu, Fang Ye, Jimei Xue, Xiaoqiang Li, Laifei Cheng. Controllable synthesis of mesoporous carbon hollow microsphere twined by CNT for enhanced microwave absorption performance [J]. J. Mater. Sci. Technol., 2020, 59(0): 164-172. |
[5] | Peng Wang, Junming Zhang, Guowu Wang, Benfang Duan, Donglin He, Tao Wang, Fashen Li. Synthesis and characterization of MoS2/Fe@Fe3O4 nanocomposites exhibiting enhanced microwave absorption performance at normal and oblique incidences [J]. J. Mater. Sci. Technol., 2019, 35(9): 1931-1939. |
[6] | Bozhou Chen, Bangchuan Zhao, Jiafeng Zhou, Zhitang Fang, Yanan Huang, Xuebin Zhu, Yuping Sun. Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2019, 35(6): 994-1002. |
[7] | Wei Zhou, Lan Long, Yang Li. Mechanical and electromagnetic wave absorption properties of Cf-Si3N4 ceramics with PyC/SiC interphases [J]. J. Mater. Sci. Technol., 2019, 35(12): 2809-2813. |
[8] | Li Wanchong, Li Chusen, Lin Lihai, Wang Yan, Zhang Jinsong. Foam structure to improve microwave absorption properties of silicon carbide/carbon material [J]. J. Mater. Sci. Technol., 2019, 35(11): 2658-2664. |
[9] | Li-Yin Gao, Hao Zhang, Cai-Fu Li, Jingdong Guo, Zhi-Quan Liu. Mechanism of improved electromigration reliability using Fe-Ni UBM in wafer level package [J]. J. Mater. Sci. Technol., 2018, 34(8): 1305-1314. |
[10] | Chang Liu, Xiang Zhu, Peng Wang, Yisen Zhao, Yongqing Ma. Defects and interface states related photocatalytic properties in reduced and subsequently nitridized Fe3O4/TiO2 [J]. J. Mater. Sci. Technol., 2018, 34(6): 931-941. |
[11] | Weiliang Chen, Xueyong Ding, Yuchao Feng, Xiongjun Liu, Kui Liu, Z.P. Lu, Dianzhong Li, Yiyi Li, C.T. Liu, Xing-Qiu Chen. Vacancy formation enthalpies of high-entropy FeCoCrNi alloy via first-principles calculations and possible implications to its superior radiation tolerance [J]. J. Mater. Sci. Technol., 2018, 34(2): 355-364. |
[12] | Shang Fu, Ying Zhang, Huiqun Liu, Danqing Yi, Bin Wang, Yong Jiang, Zhiquan Chen, Ning Qi. Influence of electric field on the quenched-in vacancy and solute clustering during early stage ageing of Al-Cu alloy [J]. J. Mater. Sci. Technol., 2018, 34(2): 335-343. |
[13] | Lili Liu, Miaoqing Qing, Yibo Wang, Shimou Chen. Defects in Graphene: Generation, Healing, and Their Effects on the Properties of Graphene: A Review [J]. J. Mater. Sci. Technol., 2015, 31(6): 599-606. |
[14] | Zhigao Xie, Dianyu Geng, Xianguo Liu, Song Ma, Zhidong Zhang. Magnetic and Microwave-absorption Properties of Graphite-coated (Fe, Ni) Nanocapsules [J]. J Mater Sci Technol, 2011, 27(7): 607-614. |
[15] | X.F. Zhang, H.Y. Liu, J.D. Guo, J.K. Shang. Inhibition of Electromigration in Eutectic SnBi Solder Interconnect by Plastic Prestraining [J]. J Mater Sci Technol, 2011, 27(11): 1072-1076. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||