J. Mater. Sci. Technol. ›› 2020, Vol. 50: 178-183.DOI: 10.1016/j.jmst.2020.01.063
• Research Article • Previous Articles Next Articles
Caiqin Zhou, Yayu Peng, Qingan Zhang*()
Received:
2019-10-11
Revised:
2019-12-24
Accepted:
2020-01-28
Published:
2020-08-01
Online:
2020-08-10
Contact:
Qingan Zhang
Caiqin Zhou, Yayu Peng, Qingan Zhang. Growth kinetics of MgH2 nanocrystallites prepared by ball milling[J]. J. Mater. Sci. Technol., 2020, 50: 178-183.
Fig. 2. Dark field TEM images (a, b) and crystallite size distributions (c, d) for ball milled pure MgH2 sample (a, c) and MgH2―10 wt% Pr3Al11 composite (b, d).
Fig. 3. MgH2 nanocrystallite sizes (a, b) and lattice strains (c, d) of pure MgH2 sample (a, c) and MgH2―10 wt% Pr3Al11 composite (b, d) after isothermal treatments.
Fig. 7. (a) HRTEM image showing the inhibition role of Pr3Al11 in growth of MgH2 nanocrystallites in the MgH2―10 wt% Pr3Al11 composite isothermally treated at 400 °C for 20 h, (b) FFT pattern and (c) IFFT image corresponding to the square region in (a).
Fig. 8. Isothermal dehydrogenation curves measured at 350 °C for the (a) pure MgH2 and (b) MgH2―10 wt% Pr3Al11 samples after isothermal treatments at 300, 350 and 400 °C for 20 h.
[1] |
V.A. Yartys, M.V. Lototskyy, E. Akiba, R. Albert, V.E. Antonov, J.R. Ares, M. Baricco, N. Bourgeois, C.E. Buckley, J.M.B. von Colbe, J.C. Crivello, F. Cuevas, R.V. Denys, M. Dornheim, F. Felderhoff, D.M. Grant, B.C. Hauback, T.D. Humphries, M. Zhu, Int. J. Hydrogen Energy 44 (2019) 7809-7859.
DOI URL |
[2] |
I.P. Jain, C. Lal, A. Jain, Int. J. Hydrogen Energy 35 (2010) 5133-5144.
DOI URL |
[3] |
J. Zhang, Y. Zhu, L. Yao, C. Xu, Y. Liu, L. Li, J. Alloys Compd. 782 2019 796-823.
DOI URL |
[4] |
J.C. Crivello, B. Dam, R.V. Denys, M. Dornheim, D.M. Grant, J. Hout, T.R. Jensen, P. de Jongh, M. Latroche, C. Milanese, D. Milcius, G.S. Walker, C.J. Webb, C. Zlotea, V.A. Yartys, Appl. Phys. A 122 (2016) 97.
DOI URL |
[5] |
V. Berube, G. Radtke, M. Dresselhaus, G. Chen, Int. J. Energy Res. 31 2007 637-663.
DOI URL |
[6] |
J. Lyu, A. Lider, V. Kudiiarov, Metals 9 (2019) 768.
DOI URL |
[7] |
R.V. Denys, A.B. Riabov, J.P. Maehlen, M.V. Lototsky, J.K. Solberg, V.A. Yartys, Acta Mater. 57 2009 3989-4000.
DOI URL |
[8] |
M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, R. Bormann, Scr. Mater. 56 2007 841-846.
DOI URL |
[9] |
C.Q. Zhou, Q.A. Zhang, J. Alloys Compd. 804 2019 299-304.
DOI URL |
[10] |
C. Zhou, C. Li, Y. Li, Q. Zhang, Dalton Trans. 48 2019 7735-7742.
DOI URL PMID |
[11] |
M. Paskevicius, D.A. Sheppard, C.E. Buckley, J. Am. Chem. Soc. 132 2010 5077-5083.
DOI URL PMID |
[12] | F. Izumi, T. Ikeda, Mater. Sci. Forum 198 (2000) 321-324. |
[13] |
Y. Nakamura, R.C. Bowman, E. Akiba, J. Alloys Compd. 373 2004 183-193.
DOI URL |
[14] |
H.R. Peng, M.M. Gong, Y.Z. Chen, F. Liu, Int. Mater. Rev. 62 2017 303-333.
DOI URL |
[15] |
M.A. Thein, L. Liu, M.O. Lai, Compos. Sci. Technol. 66 2006 531-537.
DOI URL |
[16] |
P. Cao, L. Lu, M.O. Lai, Mater. Res. Bull. 36 2001 981-988.
DOI URL |
[17] |
S. Hao, D.S. Sholl, Appl. Phys. Lett. 93 2008, 251901.
DOI URL |
[18] | S. Hao, D.S. Sholl, J. Phys, Chem. Lett. 1 2010 2968-2973. |
[19] |
A.R. Bueno R.F.M. Oman, P.M. Jardim, N.A. Rey, R.R. de Avillez, Microporous Mesoporous Mater. 185 2014 86-91.
DOI URL |
[20] |
T.R. Malow, C.C. Koch, Acta Mater. 45 1997 2177-2186.
DOI URL |
[21] |
C.E. Krill Iii, L. Helfen, D. Michels, H. Natter, A. Fitch, O. Masson, R. Birringer, Phys. Rev. Lett. 86 2001 842-845.
DOI URL PMID |
[22] |
D. Casotti, M. Ardit, R. Dinnebier, M. Dondi, F. Matteucci, I. Zama, G. Cruciani, Cryst. Growth Des. 15 2015 2282-2290.
DOI URL |
[23] |
B. Schonfelder, D. Wolf, S.R. Phillpot, M. Furtkamp, Interf. Sci. 5 1997 245-262.
DOI URL |
[24] |
J. Zhao, G.X. Wang, C. Ye, Y. Dong, Comput. Mater. Sci. 136 2017 243-252.
DOI URL |
[25] |
R. Wurschum, S. Herth, U. Brossmann, Adv. Eng. Mater. 5 2003 365-372.
DOI URL |
[26] |
K.M. Reddy, N. Kumar, B. Basu, Scr. Mater. 63 2010 585-588.
DOI URL |
[27] |
Z.Z. Fang, H. Wang, Int. Mater. Rev. 53 2008 326-352.
DOI URL |
[28] |
P.G. Shewmon, JOM 8 (1956) 918-922.
DOI URL |
[29] |
Z. Jin, D. Yu, X. Wu, K. Yin, K. Yan, J. Mater, Sci. Technol. 32 2016 1260-1266.
DOI URL |
[30] |
M.S. Park, A. Janotti, C.G. Van der Walle, Phys. Rev. B 80 (2009), 064102.
DOI URL |
[31] |
Y. Pang, D. Sun, Q. Gu, K.C. Chou, X. Wang, Q. Li, Cryst. Growth Des. 16 2016 2404-2415.
DOI URL |
[32] |
Y. Pang, Q. Li, Scr. Mater. 130 2017 223-228.
DOI URL |
[33] |
Y. Pang, Q. Li, Int. J. Hydrogen Energy 41 (2016) 18072-18987.
DOI URL |
[34] |
Z. Yuan, B. Zhang, Y. Zhang, S. Guo, X. Dong, D. Zhao, J. Mater, Sci. Technol. 34 2018 1851-1858.
DOI URL |
[35] | Z. Ma, J. Zou, D. Khan, W. Zhu, C. Hu Zeng X, W. Ding, J. Mater, Technol. 35 2019 2132-2143. |
[36] | Y. Zhang, P. Wang, Z. Hou, Z. Yuan, Y. Qi, S. Guo, J. Mater, Sci. Technol. 35 2019 1727-1734. |
[37] | Q. Luo, J. Li, B. Li, B. Liu, H. Shao, Q. Li, J. Magnes, Alloys 7 (2019) 58-71. |
[1] | Zhang Lihua, Lan Jianbo, Yang Jianyu, Guo Shenghui, Peng Jinhui, Zhang Libo, Zhou Chaojin, Ju Shaohua. Facile Synthesis of Nanocrystal Tin Oxide Hollow Microspheres by Microwave-Assisted Spray Pyrolysis Method [J]. J. Mater. Sci. Technol., 2017, 33(8): 874-878. |
[2] | M.H.Khedr. Effect of Ni+2-substituted Fe2TiO5 on the H2-reduction and CO2 Catalytic Decomposition Reactions at 500℃ [J]. J Mater Sci Technol, 2006, 22(06): 846-850. |
[3] | Yibing XIE, Chunwei YUAN. Visible Light Induced Photocatalysis of Cerium Ion Modified Titania Sol and Nanocrystallites [J]. J Mater Sci Technol, 2004, 20(01): 14-18. |
[4] | Nairong TAO, Weiping TONG, Zhenbo WANG, Wei WANG, Manling SUI, Jian LV, Ke LU. Mechanical and Wear Properties of Nanostructured Surface Layer in Iron Induced by Surface Mechanical Attrition Treatment [J]. J Mater Sci Technol, 2003, 19(06): 563-566. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||