Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 49 Issue (0): 157-165    DOI: 10.1016/j.jmst.2019.10.044
Research Article Current Issue | Archive | Adv Search |
Multi-length scale modeling of carburization, martensitic microstructure evolution and fatigue properties of steel gears
Edward Charles Henry Crawford O’ Brien, Hemantha Kumar Yeddu*()
School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
Download:  HTML  PDF(3090KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Multi-length scale modeling is performed to (i) predict the carburized case depth of SAE8620 steel gears by solving the Fick’s second law of diffusion, (ii) model the martensitic microstructure evolution in a grain inside the carburized case as well as to study the effect of stress cycling on retained austenite (RA) and martensite using a 3D phase-field model, (iii) simulate the effect of carburization and different RA contents on macroscale fatigue behavior of SAE8620 steel spur gear using the finite element method. The diffusion model predicts that the case depth increases with increasing heat treatment time and temperature. The phase-field simulations show that RA can transform to martensite during fatigue loading, where the extent of the transformation will depend on the type of stresses applied, i.e. stresses in a high stress regime or low stress regime of fatigue loading. Reverse transformation of martensite to austenite is also observed in low RA sample under high stress regime. The macroscale simulations show that the carburized case with high RA gives rise to better fatigue life compared to that with low RA.

Key words:  Phase-field model      Martensitic transformation      Microstructure      Gear steel      Carburization     
Received:  04 May 2019     
Corresponding Authors:  Hemantha Kumar Yeddu     E-mail:  hemanth. yeddu@ncl.ac.uk

Cite this article: 

Edward Charles Henry Crawford O’ Brien, Hemantha Kumar Yeddu. Multi-length scale modeling of carburization, martensitic microstructure evolution and fatigue properties of steel gears. J. Mater. Sci. Technol., 2020, 49(0): 157-165.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2019.10.044     OR     https://www.jmst.org/EN/Y2020/V49/I0/157

Fig. 1.  Diffusion of carbon in SAE 8620 steel after carburizing for (a) 2 h and (b) 5 h.
Fig. 2.  (a) Phase-field stress cycling simulations. Evolution of martensite volume fraction and mean von Mises equivalent stress in (b) high RA sample and (c) low RA sample. (d) Variation in the mean equivalent plastic strain with martensite volume fraction.
Fig. 3.  Simulated microstructures of an austenite grain with high RA content (50 % RA) subjected to stress cycling. Microstructure (a) before the stress cycling (as-quenched), (b) after completion of loading part of stress cycle-1 in the low stress regime, (c) after completion of stress cycling in the low stress regime, (d) after completion of stress cycling in the high stress regime. Martensite variants 1, 2 and 3 are shown in red, blue and green, respectively. Areas of martensite reversion are shown by ellipses (white).
Fig. 4.  Simulated microstructures of an austenite grain with low RA content (14 % RA) subjected to stress cycling. Microstructure (a) before the stress cycling (as-quenched), (b) after completion of stress cycling in the low stress regime, (c) after completion of stress cycling in the high stress regime.
Fig. 5.  Spur gear (inset) designed using Inventor and the gear tooth considered for fatigue analysis (ellipse). Carburized case can be clearly seen in the single gear tooth (left). Arrow indicates the loading direction and location.
Uncarburized Carburized
S Nf S Nf
425 11818 850 1 ×106
396 17150 900 3.5 ×105
365 46349 1000 7.5 ×104
327 129619 1100 1.9 ×104
300 294496 1100 8.7 ×104
279 449772 1200 4.8 ×103
262 733053 1300 1.5 ×103
Table 1  Experimental data of stress (S) (in MPa) and the number of cycles to failure (Nf) used in fatigue analysis of uncarburized [43] and carburized [25] gear with 0.9 mm case depth using Ansys.
Low RA High RA
S Navg S Navg
1750 9 ×103 2100 1.5 ×104
1500 1.95 ×104 1950 2.17 ×104
1250 7.33 ×104 1650 2.2 ×104
1100 1.5 ×105 1350 5.93 ×104
950 2.38 ×105 1100 8.7 ×104
900 7 ×105 900 5.13 ×105
800 2.75 ×106 800 3.39 ×106
NA NA 750 6.41 ×106
NA NA 700 6.73 ×106
NA NA 650 107
Table 2  Experimental data of stress (S) (in MPa) and average number of cycles to failure (Navg) used in fatigue analysis of gears with different RA content using Ansys [3].
Fig. 6.  ANSYS results of fatigue life of (a) uncarburized and (b) carburized gear tooth with case depth of 0.9 mm under a force of 50 kN at 45o with X-axis, (c) corresponding equivalent alternating stress of gear tooth shown in (b).
Fig. 7.  ANSYS results of (a) equivalent alternating stress and (b) von Mises equivalent stress in gear tooth with a carburized case containing high RA content under 10 kN force at 45o with X-axis.
Fig. 8.  ANSYS results of effect of RA on fatigue life. (a) Low RA and (b) high RA gear tooth under a force of 100 kN at 45o with X-axis.
[1] T. Loganathan, J. Purbolaksono, J. Inayat-Hussain, N. Wahab, Mater. Des. 32 (2011) 3544-3547.
doi: 10.1016/j.matdes.2011.02.004
[2] Z. Li, A. Freborg, B. Hansen, T. Srivatsan, J. Mater. Eng. Perf. 22 (2013) 664-672.
[3] F.B. Abudaia, Microstructure and Fatigue Strength of High Performance Gear teels, Ph.D. Thesis, Newcastle Univeristy, UK, 2003.
[4] M.A. Zaccone, J.B. Kelly, G. Krauss, in: G. Krauss (Ed.), Carburizing - Processing nd Performance, ASM Int. Metals Park, OH, 1989, pp. 249-265.
[5] V.F. da Silva, L.F. Canale, W.W. Bose-Filho, O.R. Crnkovic, J. Mat, Eng. Perfor. 8 1999) 543-548.
[6] G.T.C. Ooi, S. Roy, S. Sundararajan, Mater. Sci. Eng. A 732 (2018) 311-319.
doi: 10.1016/j.msea.2018.06.078
[7] Z.Z. Hu, M.L. Ma, Y.Q. Liu, J.H. Liu, Int. J. Fatigue 19 (1997) 641-646.
doi: 10.1016/S0142-1123(96)00051-5
[8] X.Y. Qi, L.X. Du, J. Hu, R.D.K. Misra, Mater. Sci. Eng. A 718 (2018) 477-482.
[9] L.Q. Chen, Annu. Rev. Mater. Res. 32 (2002) 113-140.
doi: 10.1146/annurev.matsci.32.112001.132041
[10] S. Minamoto, S. Nomoto, A. Hamaya, T. Horiuchi, S. Miura, ISIJ Int. 50 (2010) 914-1919.
doi: 10.2355/isijinternational.50.914
[11] N. Moelans, B. Blanpain, P. Wollants, Acta Mater. 53 (2005) 1771-1781.
doi: 10.1016/j.actamat.2004.12.026
[12] H.K. Yeddu, Comp. Mater. Sci. 154 (2018) 75-83.
doi: 10.1016/j.commatsci.2018.07.040
[13] A. Artemev, Y. Jin, A.G. Khachaturyan, Acta Mater. 49 (2001) 1165-1177.
doi: 10.1016/S1359-6454(01)00021-0
[14] H.K. Yeddu, A. Malik, J. Ågren, G. Amberg, A. Borgenstam, Acta Mater. 60 2012) 1538-1547.
doi: 10.1016/j.actamat.2011.11.039
[15] H.K. Yeddu, A. Borgenstam, J. Ågren, Acta Mater. 61 (2013) 2595-2606.
doi: 10.1016/j.actamat.2013.01.039
[16] T.W. Heo, L.Q. Chen, Acta Mater. 76 (2014) 68-81.
[17] H.K. Yeddu, Martensitic Transformations in Steels - a 3D Phase-Field Study, h.D. Thesis, KTH Royal Institute of Technology, Sweden, 2012.
[18] H.K. Yeddu, T. Lookman, A. Saxena, J. Mater. Sci. 49 (2014) 3642-3651.
[19] H.K. Yeddu, T. Lookman, A. Saxena, Mater. Sci. Eng. A 594 (2014) 48-51.
[20] H.K. Yeddu, B.A. Shaw, M.A.J. Somers, Mater. Sci. Eng. A 690 (2017) 1-5.
doi: 10.1016/j.msea.2017.02.085
[21] H. Jimenez, M. Staia, E. Puchi, Surf. Coat. Technol. 120-121 (1999) 358-365.
[22] Autodesk®Inventor software.
[23] ANSYS®Academic Research Mechanical, Release 18. 1.
[24] W.D. Callister Jr., Fundamentals of Materials Science and Engineering, John iley and Sons, New York, 2001.
pmid: 11662225
[25] K. Genel, M. Demirkol, Int. J. Fatigue 21 (1999) 207-212.
[26] O. Asi, A.C. Can, J. Pineault, M. Belassel, Mater. Des. 30 (2009) 1792-1797.
doi: 10.1016/j.matdes.2008.07.020
[27] E.A. De souza Neto, D. Peric, D.R.J. Owen, Computational Methods for Plasticity Theory and Applications, John Wiley and Sons Ltd., West Sussex (UK), 2008.
[28] Z. Nishiyama, Martensitic Transformation, Academic Press, New York, 1978.
[29] H.M. Ledbetter, M.W. Austin, Mater. Sci. Eng. 70 (1985) 143-149.
[30] S.A. Kim, W.L. Johnson, Mater. Sci. Eng. A 452-453 (2007) 633-639.
[31] C. Moosbrugger, Atlas of Stress-Strain Curves, 2nd ed., ASM International, aterials Park (OH), 2002.
[32] A. Borgenstam, M. Hillert, Acta Mater. 45 (1997) 2079-2091.
[33] E. Kozeschnik, Simulation of Precipitation Kinetics in Interstitial-Free and ake-Hardening Steel, Ph.D. Thesis, Technical University Graz, Austria, 1997.
[34] G. Amberg, R. T¨onhardt, C. Winkler, Math. Comp. Sim. 49 (1999) 257-274.
doi: 10.1016/S0378-4754(99)00054-3
[35] C. Dengo, G. Meneghetti, M. Dabala, Int. J. Fatigue 80 (2015) 145-161.
[36] S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, Acta Mater. (2003) 789-1799.
[37] P.I. Christodoulou, A.T. Kermanidis, D. Krizan, Int. J. Fatigue 91 (2016) 20-231.
[38] B. Lou, X. Jing, C. Gu, F. Shen, L. He, in: H. Kitagawa, T. Tanaka (Eds.), roceedings of International Conference on Fatigue and Fatigue Tresholds, atigue’90, Honolulu, Hawaii, 1990, pp. 1161-1166, Materials and omponent Engineering.
[39] C. Gu, B. Lou, X. Jing, F. Shen, J. Heat Treat. 7 (1989) 87-94.
[40] L. Liu, B. He, M.X. Huang, Adv. Eng. Mater. 20 (2018) 1-17, 1701083.
[41] K.I. Sugimoto, D. Fiji, N. Yoshikawa, Procedia Eng. 2 (2010) 359-362.
[42] H. Düzcükoğlu A. Ç alik, H. $\dot{I}$mrek, M.S. Karakaş , Trib. Trans. 53 (2010) 85-490.
[43] B. Singh, Fatigue Life Evaluation of Heat Treated and PVD Coated Low Alloy Steels , Ph.D. Thesis, Punjabi University, India, 2011.
[44] R. Browell, A. Hancq, Calculating and Displaying Fatigue Results, ANSYS Inc, 2006, pp. 1-42.
[45] M.L. Raotole, D.B. Sadaphale, J.R. Chaudhari, Int. J. Emerg. Tech. Adv. Eng. 3 (2013) 447-454.
[46] J.R. Davis, Gear Materials, Properties and Manufacture, ASM Inter- national, Materials Park (OH), 2005, pp. 257-291.
[1] Chaoyu Han, Shibo Wen1, Feng Ye, Wenjia Wu, Shaowei Xue, Yongfeng Liang, Binbin Liu, Junpin Lin. Deformation twinning in equiaxed-grained Fe-6.5 wt.%Si alloy after rotary swaging[J]. 材料科学与技术, 2020, 49(0): 25-34.
[2] Xinzeng Liang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Probing martensitic transformation, kinetics, elastic and magnetic properties of Ni2-xMn1.5In0.5Cox alloys[J]. 材料科学与技术, 2020, 44(0): 31-41.
[3] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
[4] Piao Gao, Wenpu Huang, Huihui Yang, Guanyi Jing, Qi Liu, Guoqing Wang, Zemin Wang, Xiaoyan Zeng. Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5Y alloy produced by selective laser melting[J]. 材料科学与技术, 2020, 39(0): 144-154.
[5] Xiaogang Li, Kejian Li, Shanlin Li, Yao Wu, Zhipeng Cai, Jiluan Pan. Microstructure and high temperature fracture toughness of NG-TIG welded Inconel 617B superalloy[J]. 材料科学与技术, 2020, 39(0): 173-182.
[6] Shanshan Chen, Bin Zhang, Bin Zhanggchun, Hao Lin, Hui Yang, Feng Zheng, Ming Chen, Ke Yang. Assessment of structure integrity, corrosion behavior and microstructure change of AZ31B stent in porcine coronary arteries[J]. 材料科学与技术, 2020, 39(0): 39-47.
[7] Pengfei Gao, Mingwang Fu, Mei Zhan, Zhenni Lei, Yanxi Li. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review[J]. 材料科学与技术, 2020, 39(0): 56-73.
[8] Honggang Dong, Yueqing Xia, Xinxing Xu, Gul Jabeen Naz, Xiaohu Hao, Peng Li, Jun Zhou, Chuang Dong. Performance of GH4169 brazed joint using a new designed nickel-based filler metal via cluster-plus-glue-atom model[J]. 材料科学与技术, 2020, 39(0): 89-98.
[9] Hao Yu, Wei Xu, Sybrand van der Zwaag. Microstructure and dislocation structure evolution during creep life of Ni-based single crystal superalloys[J]. 材料科学与技术, 2020, 45(0): 207-214.
[10] Kai Wang, Lei Chen, Chenguang Xu, Wen Zhang, Zhanguo Liu, Yujin Wang, Jiahu Ouyang, Xinghong Zhang, Yudong Fu, Yu Zhou. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic[J]. 材料科学与技术, 2020, 39(0): 99-105.
[11] Lijin Dong, Cheng Ma, Qunjia Peng, En-Hou Han, Wei Ke. Microstructure and stress corrosion cracking of a SA508-309L/308L-316L dissimilar metal weld joint in primary pressurized water reactor environment[J]. 材料科学与技术, 2020, 40(0): 1-14.
[12] Wei Fu, Xiaoguo Song, Ruichen Tian, Yuzhen Lei, Weimin Long, Sujuan Zhong, Jicai Feng. Wettability and joining of SiC by Sn-Ti: Microstructure and mechanical properties[J]. 材料科学与技术, 2020, 40(0): 15-23.
[13] Z.C. Luo, H.P. Wang. Primary dendrite growth kinetics and rapid solidification mechanism of highly undercooled Ti-Al alloys[J]. 材料科学与技术, 2020, 40(0): 47-53.
[14] Zhiqiang Zhang, Changshu He, Ying Li, Lei Yu, Su Zhao, Xiang Zhao. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints[J]. 材料科学与技术, 2020, 43(0): 1-13.
[15] XiTing Zhong, Lei Wang, LinKe Huang, Feng Liu. Transition of dynamic recrystallization mechanism during hot deformation of Incoloy 028 alloy[J]. 材料科学与技术, 2020, 42(0): 241-253.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.