J. Mater. Sci. Technol. ›› 2020, Vol. 44: 24-30.DOI: 10.1016/j.jmst.2019.10.031
• Research Article • Previous Articles Next Articles
Ruifeng Dongab, Jinshan Lib, Hongchao Koub*(), Jiangkun Fanb, Yuhong Zhaoa*(
), Hua Houa, Li Wua
Received:
2019-07-30
Revised:
2019-09-18
Accepted:
2019-10-14
Published:
2020-05-01
Online:
2020-05-21
Contact:
Hongchao Kou,Yuhong Zhao
Ruifeng Dong, Jinshan Li, Hongchao Kou, Jiangkun Fan, Yuhong Zhao, Hua Hou, Li Wu. ω-Assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy[J]. J. Mater. Sci. Technol., 2020, 44: 24-30.
Fig. 2. (a) Dilatometry curve of the β-quenched specimen continuously heated at the rate of 3 °C/min and (b) the corresponding fraction of ω phase as a function of heating temperature.
Fig. 3. (a, c) Bright-field micrographs (the inset showing the selected-area electron diffraction (SAED) pattern in the [011]β zone axis) and (b, d) the corresponding dark-field micrographs of ω phase using the (0001)ω reflection indicated by the dotted circle in inset of specimens quenched at different heating temperatures: (a, b) 300 °C; (c, d) 350 °C.
Fig. 4. TEM observation of the specimen quenched at 400 °C: (a) the SAED pattern with the [011]β zone axis; (b) the corresponding key diagram of Fig. 4(a); (c) the dark-field micrograph taken by using the reflection circled by green circle in Fig. 4(a); (d) the high-resolution TEM (HRTEM) showing the co-existence of ω phase and α phase within β matrix; the corresponding fast Fouriter transform (FFT) diffractogram (e) and Inverse FFT lattice image (f) of Fig. 4(d).
Fig. 5. Micrographs of specimens after quenching at 600 °C: (a) SEM micrograph showing the overall microstructure; (b, c) the detailed TEM micrographs showing the intragranular α phase and the grain boundary α phase.
Heat treatment / Time | Average width of αIG (nm) | Average length of αIG (μm) | Volume fraction of α (%) | Average width of GBs (nm) |
---|---|---|---|---|
Continuously heating / ~192 min | 84 ± 8 | 1.2 ± 0.5 | 62.3 ± 1.2 | 142.4 ± 5.6 |
Directly Aging / 192 min | 282 ± 30 | 4.8 ± 0.3 | 61.5 ± 2.1 | 85.6 ± 7.8 |
Table 1 Morphological parameters of α precipitates and the average width of GBs of specimens under different thermal conditions.
Heat treatment / Time | Average width of αIG (nm) | Average length of αIG (μm) | Volume fraction of α (%) | Average width of GBs (nm) |
---|---|---|---|---|
Continuously heating / ~192 min | 84 ± 8 | 1.2 ± 0.5 | 62.3 ± 1.2 | 142.4 ± 5.6 |
Directly Aging / 192 min | 282 ± 30 | 4.8 ± 0.3 | 61.5 ± 2.1 | 85.6 ± 7.8 |
Fig. 7. Tensile engineering stress-strain curves of the specimens under different thermal conditions at room temperature with the strain rate of 10-3 s-1.
Fig. 8. Fracture surface morphologies and the corresponding magnification micrographs of specimens under different thermal treatment conditions: (a, b) the as-solution treated specimens; (c, d) the directly aged specimens; (e, f) the continuously heated specimens.
Fig. 9. TEM images of the specimen directly aged at 600 °C for 192 min showing the (a) intragranular α precipitates and (b) the grain boundary α precipitates.
[1] | J. Fanning, J. Mater. Eng. Perform. 14(2005) 788-791. |
[2] | J. Ferrero, J. Mater. Eng. Perform. 14(2005) 691-696. |
[3] | J. Fan, J. Li, H. Kou, K. Hua, B. Tang, Y. Zhang, Mater. Des. 83(2015) 499-507. |
[4] | R. Dong, J. Li, H. Kou, J. Fan, B. Tang, J. Mater. Sci. Technol. 35(2019) 48-54. |
[5] |
Z.X. Du, S.L. Xiao, Y.P. Shen, J.S. Liu, J. Liu, L.J. Xu, F.T. Kong, Y.Y. Chen, Mater. Sci. Eng. A 631 (2015) 67-74.
DOI URL |
[6] | J. Fan, J. Li, H. Kou, K. Hua, B. Tang, Mater. Charact. 96(2014) 93-99. |
[7] | R.K. Gupta, B. Pant, V. Agarwala, R.C. Agarwala, P.P. Sinha, J. Mater. Sci. Technol. 26(2010) 693-704. |
[8] | X.L. Xu, Y.Z. Chen, F. Liu, Mater. Lett. 81(2012) 73-75. |
[9] | Z. Zhao, J. Chen, S. Guo, H. Tan, X. Lin, W. Huang, J. Mater. Sci. Technol. 33(2017) 675-681. |
[10] |
C. Lan, Y. Wu, L. Guo, H. Chen, F. Chen, J. Mater. Sci. Technol. 34(2017) 788-792.
DOI URL |
[11] |
W. Chen, C. Li, X. Zhang, C. Chen, Y.C. Lin, K. Zhou, J. Alloys Compd. 783(2019) 709-717.
DOI URL |
[12] |
R. Dong, J. Li, J. Fan, H. Kou, B. Tang, Mater. Charact. 132(2017) 199-204.
DOI URL |
[13] |
Q. Hui, X. Xue, H. Kou, M. Lai, B. Tang, J. Li, J. Mater. Sci. 48(2013) 1966-1972.
DOI URL |
[14] |
Y. Zheng, R.E.A. Williams, H.L. Fraser, Scr. Mater. 113(2016) 202-205.
DOI URL |
[15] | GB/T 228-2002, China, 2002. |
[16] |
A. Dehghan-Manshadi, R.J. Dippenaar, Mater. Sci. Eng. A 528 (2011) 1833-1839.
DOI URL |
[17] |
B. Wang, Z. Liu, Y. Gao, S. Zhang, X. Wang, J. Univ. Sci. Technol. 14(2007) 335-340.
DOI URL |
[18] |
F. Prima, P. Vermaut, G. Texier, D. Ansel, T. Gloriant, Scr. Mater. 54(2006) 645-648.
DOI URL |
[19] |
T. Li, D. Kent, G. Sha, L.T. Stephenson, L.T. Stephenson, A.V. Ceguerra, S.P. Ringer, M.S. Dargusch, J.M. Cairney, Acta Mater. 106(2016) 353-366.
DOI URL |
[20] |
Y. Zheng, R.E. Williams, D. Wang, R. Shi, S. Nag, P. Kami, J.M. Sosa, R. Banerjee, Y. Wang, H.L. Fraser, Acta Mater. 103(2016) 850-858.
DOI URL |
[21] |
Y. Zheng, D. Choudhuri, T. Alam, R.E.A. Williams, R. Banerjee, H.L. Fraser, Scr. Mater. 123(2016) 81-85.
DOI URL |
[22] |
S. Azimzadeh, H.J. Rack, Metall. Mater. Trans. A 29 (1998) 2455-2467.
DOI URL |
[23] | S. Mantri, D. Choudhuri, A. Behera, J. Cotton, N. Kumar, R. Banerjee, I Metall. Mater. Trans. A 46 (2015) 2803-2808. |
[24] |
S. Sadeghpour, S.M. Abbasi, M. Morakabati, A. Kisko, L.P. Karjalainen, D.A. Porter, Scr. Mater. 145(2018) 104-108.
DOI URL |
[25] |
M.J. Lai, C.C. Tasan, D. Raabe, Acta Mater. 111(2016) 173-186.
DOI URL |
[26] |
S. Cai, J.E. Schaffer, Y. Ren, Mater. Res. Lett. 4(2016) 161-167.
DOI URL |
[27] |
J. Fan, J. Li, H. Kou, K. Hua, B. Tang, Y. Zhang, J. Alloys Compd. 682(2016) 517-524.
DOI URL |
[28] |
B. He, J. Li, X. Cheng, H.M. Wang, Mater. Sci. Eng. A 699 (2017) 229-238.
DOI URL |
[29] |
S.A. Mantri, D. Choudhuri, T. Alam, G.B. Viswanathan, J.M. Sosa, H.L. Fraser, R. Banerjee, Scr. Mater. 154(2018) 139-144.
DOI URL |
[1] | Seong-Woo Choi, Jae Suk Jeong, Jong Woo Won, Jae Keun Hong, Yoon Suk Choi. Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation [J]. J. Mater. Sci. Technol., 2021, 66(0): 193-201. |
[2] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[3] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[4] | Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 83-90. |
[5] | Pan Xie, Shucheng Shen, Cuilan Wu, Jianghua Chen. Abnormal orientation relation between fcc and hcp structures revealed in a deformed high manganese steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 156-161. |
[6] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
[7] | Huabei Peng, Dian Wang, Qi Liao, Yuhua Wen. Degeneration and rejuvenation of shape memory effect associated with the precipitation of coherent nano-particles in a Co-Ni-Si shape memory alloy [J]. J. Mater. Sci. Technol., 2021, 76(0): 150-155. |
[8] | Bingqiang Wei, Song Ni, Yong Liu, Xiaozhou Liao, Min Song. Phase transformation and structural evolution in a Ti-5at.% Al alloy induced by cold-rolling [J]. J. Mater. Sci. Technol., 2020, 49(0): 211-223. |
[9] | S.G. Wang, M. Sun, S.Y. Liu, X. Liu, Y.H. Xu, C.B. Gong, K. Long, Z.D. Zhang. Synchronous optimization of strengths, ductility and corrosion resistances of bulk nanocrystalline 304 stainless steel [J]. J. Mater. Sci. Technol., 2020, 37(0): 161-172. |
[10] | Huiting Zheng, Ruirun Chen, Gang Qin, Xinzhong Li, Yanqing Su, Hongsheng Ding, Jingjie Guo, Hengzhi Fu. Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification [J]. J. Mater. Sci. Technol., 2020, 38(0): 19-27. |
[11] | Fan Jiangkun, Zhang Zhixin, Gao Puyi, Yang Ruimeng, Li Huan, Tang Bin, Kou Hongchao, Zhang Yudong, Esling Claude, Li Jinshan. On the nature of a peculiar initial yield behavior in metastable β titanium alloy Ti-5Al-5Mo-5V-3Cr-0.5Fe with different initial microstructures [J]. J. Mater. Sci. Technol., 2020, 38(0): 135-147. |
[12] | Xinglong An, Hao Zhang, Song Ni, Xiaoqin Ou, Xiaozhou Liao, Min Song. Effects of temperature and alloying content on the phase transformation and {10$\bar{1}$1} twinning in Zr during rolling [J]. J. Mater. Sci. Technol., 2020, 41(0): 76-80. |
[13] | Qiuju Zheng, Lili Zhang, Hongxiang Jiang, Jiuzhou Zhao, Jie He. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2020, 47(0): 142-151. |
[14] | Piao Gao, Wenpu Huang, Huihui Yang, Guanyi Jing, Qi Liu, Guoqing Wang, Zemin Wang, Xiaoyan Zeng. Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5Y alloy produced by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 39(0): 144-154. |
[15] | S.J. Tsianikas, Y. Chen, Z. Xie. Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings [J]. J. Mater. Sci. Technol., 2020, 39(0): 183-189. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||