J. Mater. Sci. Technol. ›› 2020, Vol. 49: 211-223.DOI: 10.1016/j.jmst.2020.02.032
• Research Article • Previous Articles Next Articles
Bingqiang Weia, Song Nia, Yong Liua, Xiaozhou Liaob, Min Songa,*()
Received:
2019-11-25
Revised:
2020-01-02
Accepted:
2020-01-09
Published:
2020-07-15
Online:
2020-07-17
Contact:
Min Song
Bingqiang Wei, Song Ni, Yong Liu, Xiaozhou Liao, Min Song. Phase transformation and structural evolution in a Ti-5at.% Al alloy induced by cold-rolling[J]. J. Mater. Sci. Technol., 2020, 49: 211-223.
Fig. 1. (a) A bright field TEM image of the un-deformed Ti-5at.%Al alloy, with the inset an SAED pattern under the [1 $\bar{2}$10] zone axis of the HCP matrix. (b) A bright-field TEM image of the R20 sample with FCC lamellas inside. (c) An SAED pattern taken from the area marked by the red dotted circle in (b), showing the HCP to FCC phase transformation with the OR of <1 $\bar{2}$10>HCP/???????/<1 $\bar{1}$0>FCC and {0001}HCP//{111}FCC. (d) An HRTEM image of an interface between the HCP and FCC phases, with the inset being a Fourier filtered image taken from the area marked by the square in Fig.1(d).
Fig. 2. (a) A bright-field TEM image of the R20 sample with another type of FCC lamella inside. (b) The SAED pattern taken from the interface of the HCP and FCC phases in (a), showing the HCP to FCC phase transformation with the OR of [0001]HCP//[001]FCC and (10$\bar{1}$0)HCP//(110)FCC. (c) An HRTEM image of the interface of the HCP and FCC phases, with the inset being a Fourier filtered image taken from the area marked by the square. (d) A bright-filed TEM image of a {101-2}<$\bar{1}$011> deformation twin, and the insets in the upper left and lower right corners are an SAED pattern and an HRTEM image of the {101-2}<$\bar{1}$011> twin, respectively.
Fig. 3. (a) A bright-field TEM image of the R40 sample. (b) An SAED pattern taken from the FCC area b in (a). (c) A dark-field TEM image using the reflection marked by the white arrow in (b). (d) An SAED pattern taken from the interface between the HCP and FCC area d in (a). (e) An SAED pattern taken from the HCP matrix area e in (a).
Fig. 4. (a) A bright-field TEM image of the HCP matrix in the R40 sample. (b, c) SAED patterns taken from the areas b and c marked by red dotted circles in (a), respectively.
Fig. 5. (a) A bright-field TEM image of the R60 sample for the HCP matrix, with the inset being an SAED pattern obtained from the area outlined by a red dotted circle. (b) A dark-field TEM image of (a) using the reflection marked by the red circle in the inset of (a). (c) A bright-field TEM image of the R60 sample for the FCC structure and the inset is a corresponding SAED pattern. (d) The grain size distribution of the FCC structure in the R60 sample.
Fig. 6. (a) An HRTEM image of zero macroscopic strain twins with the 9R structure. The inset is a Fourier filtered image taken from the area marked by the square. (b) Another HRTEM image of the 9R structure, with the inset being an FFT pattern taken from the area marked by the square. (c) An HRTEM image observed in a large area of the FCC structure in the R40 sample, and (d) an enlarged HRTEM image corresponding to the area marked by the square in (c).
Fig. 7. Schematics for the formation of ITBs and the 9R structure. (a) Schematics of the b1, b2, b3 partials for the HCP and FCC structures viewed from [0001]HCP and [111]FCC directions, respectively. (b) Schematic for the HCP to FCC transformation and formation of ITBs and the 9R structures under the action of b1, b2 and b3 partials.
Fig. 8. (a) A bright-field TEM image of the P-type phase transformation and (b) an HRTEM image taken from the area marked by the square in (a). (c) An HRTEM image of deformation twins with macroscopic strain observed in the FCC structure corresponding to the P-type phase transformation.
Fig. 9. (a,b) Atomic schematics of the lattice parameters and ORs for the two types of HCP to FCC phase transformations. (c,d) Fourier filtered HRTEM images of the interfaces of the HCP and the FCC phases for two types of phase transformations.
Fig. 10. (a) A bright-field TEM image containing both the B-type and the P-type phase transformations, with the inset being an SAED pattern taken from the area outlined by the white box. (b) An HRTEM image corresponding to the area outlined by the box in (a). (c) Another HRTEM image containing the two types of phase transformations. (d) Another HRTEM image in a large area of the FCC structure in the R40 sample.
Fig. 11. (a) A schematic of the experimental observed OR for the B-type phase trans-formation. (b,c) Schematics of the OR viewed along two other directions of the B typephase transformation.
Fig. 12. (a) A schematic of the experimental observed OR for the P-type phase trans-formation. (b,c) Schematics of the OR viewed along two other directions of the P typephase transformation.
Fig. 13. (a) An HRTEM image observed in a large area of the FCC structure. (b,c,d) are enlarged HRTEM images corresponding to the areas indicated by the numbers 1, 2, and 3, respectively.
[1] |
R. Valiev, Nat. Mater. 3 (2004) 511.
URL PMID |
[2] | A. Staroselsky, L. Anand, Int. J. Plast. 19 (2003) 1843-1864. |
[3] | X. Liao, J. Wang, J. Nie, Y. Jiang, P. Wu, MRS Bull. 41 (2016) 314-319. |
[4] |
V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Nat. Mater. 3 (2004) 43-47.
URL PMID |
[5] | Y. Cao, S. Ni, X. Liao, M. Song, Y. Zhu, Mater. Sci. Eng., R 133 (2018) 1-59. |
[6] |
Y. Zhu, X. Liao, X. Wu, Prog. Mater. Sci. 57 (2012) 1-62.
DOI URL |
[7] | M.H. Yoo, Metall. Trans. A 12 (1981) 409-418. |
[8] |
J. Gong, T.B. Britton, M.A. Cuddihy F.P.E. Dunne, A.J. Wilkinson, Acta Mater. 96 (2015) 249-257.
DOI URL |
[9] |
H. Zhao, M. Song, S. Ni, S. Shao, J. Wang, X. Liao, Acta Mater. 131 (2017) 271-279.
DOI URL |
[10] |
H. Zhao, X. Hu, M. Song, S. Ni, Scripta Mater. 132 (2017) 63-67.
DOI URL |
[11] |
X. Wu, N. Tao, Y. Hong, G. Liu, B. Xu, J. Lu, K. Lu, Acta Mater. 53 (2005) 681-691.
DOI URL |
[12] |
G.P. Zheng, Y.M. Wang, M. Li, Acta Mater. 53 (2005) 3893-3901.
DOI URL |
[13] |
T. Waitz H.J.Am. Karnthaler, Acta Mater. 45 (1997) 837-847.
DOI URL |
[14] |
Y. Liu, H. Yang, G. Tan, S. Miyazaki, B. Jiang, Y. Liu, J. Alloys. Compd. 368 (2004) 157-163.
DOI URL |
[15] |
D.H. Hong, T.W. Lee, S.H. Lim, W.Y. Kim, S.K. Hwang, Scripta Mater. 69 (2013) 405-408.
DOI URL |
[16] |
X. Zheng, M. Gong, T. Xiong, H. Ge, L. Yang, Y. Zhou, S. Zheng, J. Wang, X. Ma, Scripta Mater. 162 (2019) 326-330.
DOI URL |
[17] |
H.C. Wu, A. Kumar, J. Wang, X.F. Bi, C.N. Tomé, Z. Zhang, S.X. Mao, Sci. Rep. 6 (2016) 24370.
DOI URL PMID |
[18] |
Y. Koizumi, T. Fujita, Y. Minamino, S. Hata, Acta Mater. 58 (2010) 1104-1115.
DOI URL |
[19] |
R. Jing, C. Liu, M. Ma, R. Liu, J. Alloys. Compd. 552 (2013) 202-207.
DOI URL |
[20] | R. Jing, S. Liang, C. Liu, M. Ma, R. Liu, Mater. Sci. Eng., A 559 (2013) 474-479. |
[21] |
X.-S. Yang, S. Sun, X.-L. Wu, E. Ma, T.-Y. Zhang, Sci. Rep. 4 (2014) 6141.
URL PMID |
[22] | X.-S. Yang, S. Sun, T.-Y. Zhang, Acta Mater. 95 (2015) 264-273. |
[23] |
H. Zheng, J. Wang, J.Y. Huang, J. Wang, Z. Zhang, S.X. Mao, Nano Lett. 13 (2013) 6023-6027.
DOI URL PMID |
[24] | http://www.znxc.cn/, Zhong Nuo New Materials Technologies Inc. |
[25] |
J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J. Huang, J. Hirth, Acta Mater. 58 (2010) 2262-2270.
DOI URL |
[26] |
X. Wu, X. Liao, S. Srinivasan, F. Zhou, E. Lavernia, R. Valiev, Y. Zhu, Phys. Rev. Lett. 100 (2008), 095701.
URL PMID |
[27] | B. Wei, S. Ni, Y. Liu, M. Song, Scripta Mater. 169 (2019) 46-51. |
[28] | L. Xiao, Mater. Sci. Eng., A 394 (2005) 168-175. |
[29] | Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, Acta Mater. 46 (1998) 3317-3331. |
[30] | X. Wu, N. Tao, Y. Hong, B. Xu, J. Lu, K. Lu, Acta Mater. 50 (2002) 2075-2084. |
[31] | D. Yang, P. Cizek, P. Hodgson, C. Wen, Acta Mater. 58 (2010) 4536-4548. |
[32] | H. Zhao, S. Ni, M. Song, X. Xiong, X. Liang, H. Li, Mater. Sci. Eng., A 645 (2015) 328-332. |
[33] | Q. Xue G. Gray III, Metall. Mater. Trans. A 37 (2006) 2435-2446. |
[34] | N. Tao, K. Lu, Scripta Mater. 60 (2009) 1039-1043. |
[35] | K. Wang, N. Tao, G. Liu, J. Lu, K. Lu, Acta Mater. 54 (2006) 5281-5291. |
[36] |
W. Wu, M. Song, S. Ni, J. Wang, Y. Liu, B. Liu, X. Liao, Sci. Rep. 7 (2017) 46720.
DOI URL PMID |
[37] |
Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavernia, S.P. Ringer, Z. Horita, T.G. Langdon, Y.T. Zhu, Mater. Sci. Eng., A 527 (2010) 4959-4966.
DOI URL |
[38] | J. Wang, O. Anderoglu, J. Hirth, A. Misra, X. Zhang, Appl. Phys. Lett. 95 (2009), 021908. |
[39] |
L. Liu, J. Wang, S.K. Gong, S.X. Mao, Phys. Rev. Lett. 106 (2011), 175504.
DOI URL PMID |
[40] | J. Wang, A. Misra, J.P. Hirth, Phys. Rev. B 83 (2011), 021908-021908-3. |
[41] |
Y.T. Zhu, X.Z. Liao, X.L. Wu, J. Mater. Eng. Perform. 14 (2005) 467-472.
DOI URL |
[42] | J. Rittner, D. Seidman, K. Merkle, Phys. Rev. B 53 (1996) R4241. |
[43] |
G. Lucadamo, D. Medlin, Science 300 (2003) 1272-1275.
DOI URL PMID |
[44] | X. An, M. Song, Y. Huang, X. Liao, S. Ringer, T. Langdon, Y. Zhu, Scripta Mater. 72 (2014) 35-38. |
[45] | X.Y. Zhang, X.L. Wu, A.W. Zhu, Appl. Phys. Lett. 94 (2009) 5062. |
[46] | X.H. An, Q.Y. Lin, S.D. Wu, Z.F. Zhang, Scripta Mater. 68 (2013) 988-991. |
[47] | N. Li, J. Wang, J.Y. Huang, A. Misra, X. Zhang, Scripta Mater. 64 (2011) 149-152. |
[48] | X.L. Ma, H. Zhou, J. Narayan, Y.T. Zhu, Scripta Mater. 109 (2015) 89-93. |
[49] |
X.Z. Liao, F. Zhou, E.J. Lavernia, S.G. Srinivasan, M.I. Baskes, D.W. He, Y.T. Zhu, Appl. Phys. Lett. 83 (2003) 632-634.
DOI URL |
[50] | S. Ni, Y.B. Wang, X.Z. Liao, H.Q. Li, R.B. Figueiredo, S.P. Ringer, T.G. Langdon, Y.T. Zhu, Phys. Rev. B 84 (2011), 235401. |
[51] | H. Zhang, X. Ou, B. Wei, S. Ni, M. Song, Comput. Mater. Sci. 172 (2020), 109328. |
[52] | C. Chen, S. Qian, S. Wang, L. Niu, R. Liu, B. Liao, Z. Zhong, P. Lu, P. Li, L. Cao, Y. Wu, Mater. Charact. 136 (2018) 257-263. |
[53] | H. Zhao, S. Ni, M. Song, Mater. Sci. Eng., A 660 (2016) 34-38. |
[54] | S. Xiong, W. Qi, B. Huang, M. Wang, L. Wei, J. Phys. Chem. C 115 (2011) 10365-10369. |
[55] | J.W. Christian, S. Mahajan, Prog. Mater. Sci. 39 (1995) 1-157. |
[56] | K. Luo, S. Ni, M. Song, Int. J. Refract. Met. Hard Mater. 75 (2018) 107-110. |
[57] | E. Metzbower, Metall. Mater. Trans. B 2 (1971) 3099-3103. |
[58] | Q. Yu, S. Li, A.M. Minor, J. Sun, E. Ma, Appl. Phys. Lett. 100 (2012), 063109. |
[59] |
E.O. Ezugwu, Z.M. Wang, J. Mater. Process. Technol. 68 (1997) 262-274.
DOI URL |
[1] | Yang Li, Ying Jiang, Bin Liu, Qun Luo, Bin Hu, Qian Li. Understanding grain refining and anti Si-poisoning effect in Al-10Si/Al-5Nb-B system [J]. J. Mater. Sci. Technol., 2021, 65(0): 190-201. |
[2] | Bingnan Qian, Jinyong Zhang, Yangyang Fu, Fan Sun, Yuan Wu, Jun Cheng, Philippe Vermaut, Frédéric Prima. In-situ microstructural investigations of the TRIP-to-TWIP evolution in Ti-Mo-Zr alloys as a function of Zr concentration [J]. J. Mater. Sci. Technol., 2021, 65(0): 228-237. |
[3] | Nagasivamuni Balasubramani, Gui Wang, David H. StJohn, Matthew S. Dargusch. Current understanding of the origin of equiaxed grains in pure metals during ultrasonic solidification and a comparison of grain formation processes with low frequency vibration, pulsed magnetic and electric-current pulse techniques [J]. J. Mater. Sci. Technol., 2021, 65(0): 38-53. |
[4] | Huabei Peng, Dian Wang, Qi Liao, Yuhua Wen. Degeneration and rejuvenation of shape memory effect associated with the precipitation of coherent nano-particles in a Co-Ni-Si shape memory alloy [J]. J. Mater. Sci. Technol., 2021, 76(0): 150-155. |
[5] | Pan Xie, Shucheng Shen, Cuilan Wu, Jianghua Chen. Abnormal orientation relation between fcc and hcp structures revealed in a deformed high manganese steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 156-161. |
[6] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
[7] | Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 83-90. |
[8] | Tongzhao Gong, Yun Chen, Shanshan Li, Yanfei Cao, Dianzhong Li, Xing-Qiu Chen, Guillaume Reinhart, Henri Nguyen-Thi. Revisiting dynamics and models of microsegregation during polycrystalline solidification of binary alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 155-167. |
[9] | Shenbao Jin, Zhenjiao Luo, Xianghai An, Xiaozhou Liao, Jiehua Li, Gang Sha. Composition-dependent dynamic precipitation and grain refinement in Al-Si system under high-pressure torsion [J]. J. Mater. Sci. Technol., 2021, 68(0): 199-208. |
[10] | Kunlei Hou, Min Wang, Meiqiong Ou, Haoze Li, Xianchao Hao, Yingche Ma, Kui Liu. Effects of microstructure evolution on the deformation mechanisms and tensile properties of a new Ni-base superalloy during aging at 800 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 40-52. |
[11] | Seong-Woo Choi, Jae Suk Jeong, Jong Woo Won, Jae Keun Hong, Yoon Suk Choi. Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation [J]. J. Mater. Sci. Technol., 2021, 66(0): 193-201. |
[12] | Piao Gao, Wenpu Huang, Huihui Yang, Guanyi Jing, Qi Liu, Guoqing Wang, Zemin Wang, Xiaoyan Zeng. Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5Y alloy produced by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 39(0): 144-154. |
[13] | S.J. Tsianikas, Y. Chen, Z. Xie. Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings [J]. J. Mater. Sci. Technol., 2020, 39(0): 183-189. |
[14] | Mohammad Nasim, Yuncang Li, Ming Wen, Cuie Wen. A review of high-strength nanolaminates and evaluation of their properties [J]. J. Mater. Sci. Technol., 2020, 50(0): 215-244. |
[15] | Fan Jiangkun, Zhang Zhixin, Gao Puyi, Yang Ruimeng, Li Huan, Tang Bin, Kou Hongchao, Zhang Yudong, Esling Claude, Li Jinshan. On the nature of a peculiar initial yield behavior in metastable β titanium alloy Ti-5Al-5Mo-5V-3Cr-0.5Fe with different initial microstructures [J]. J. Mater. Sci. Technol., 2020, 38(0): 135-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||