Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 49 Issue (0): 211-223    DOI: 10.1016/j.jmst.2020.02.032
Research Article Current Issue | Archive | Adv Search |
Phase transformation and structural evolution in a Ti-5at.% Al alloy induced by cold-rolling
Bingqiang Weia, Song Nia, Yong Liua, Xiaozhou Liaob, Min Songa,*()
a State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
b School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
Download:  HTML  PDF(8174KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The phase transformation, deformation mechanism and their correlation in a cold-rolled Ti-5at.%Al alloy were investigated. Two types of phase transformations from a hexagonal close-packed (HCP) structure to a face-centered cubic (FCC) structure were observed: the basal-type (B-type) with an orientation relationship of $<1\bar{2}\text{10}{{\text{}}_{\text{HCP}}}<1\bar{1}\text{0}{{\text{}}_{\text{FCC}}}$ and {0001}HCP//{111}FCC, and the prismatic-type (P-type) with an orientation relationship of $<1\bar{2}\text{10}{{\text{}}_{\text{HCP}}}<1\bar{1}\text{0}{{\text{}}_{\text{FCC}}}$ and ${{\text{ }\!\!\{\!\!\text{ 10}\bar{1}\text{0 }\!\!\}\!\!\text{ }}_{\text{HCP}}}\text{// }\!\!\{\!\!\text{ 110}{{\text{ }\!\!\}\!\!\text{ }}_{\text{FCC}}}$. The two types of transformations both accommodate the strain along the < c> axis of the HCP matrix. With the proceeding of deformation, different deformation mechanisms were activated in the FCC and the HCP structures, respectively, which led to a faster grain refinement rate in the FCC structure than in the HCP matrix. Deformation twins with zero macroscopic strain were prevalent in the FCC domains produced by the B-type transformation, while deformation twins with macroscopic strain were normally observed in the FCC domains produced by the P-type transformation. This is in accordance with the lattice mismatches produced during phase transformation. The easy occurrence of deformation twinning in the FCC structure contributed significantly to the grain refinement process. In addition, the interaction between neighboring FCC domains produced by the two types of phase transformations also accelerated the grain refinement process.

Key words:  Ti-Al alloy      Deformation mechanism      Phase transformation      Grain refinement      Deformation twinning     
Received:  25 November 2019     
Corresponding Authors:  Min Song     E-mail:  msong@csu.edu.cn

Cite this article: 

Bingqiang Wei, Song Ni, Yong Liu, Xiaozhou Liao, Min Song. Phase transformation and structural evolution in a Ti-5at.% Al alloy induced by cold-rolling. J. Mater. Sci. Technol., 2020, 49(0): 211-223.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2020.02.032     OR     https://www.jmst.org/EN/Y2020/V49/I0/211

Fig. 1.  (a) A bright field TEM image of the un-deformed Ti-5at.%Al alloy, with the inset an SAED pattern under the [1 $\bar{2}$10] zone axis of the HCP matrix. (b) A bright-field TEM image of the R20 sample with FCC lamellas inside. (c) An SAED pattern taken from the area marked by the red dotted circle in (b), showing the HCP to FCC phase transformation with the OR of <1 $\bar{2}$10>HCP/???????/<1 $\bar{1}$0>FCC and {0001}HCP//{111}FCC. (d) An HRTEM image of an interface between the HCP and FCC phases, with the inset being a Fourier filtered image taken from the area marked by the square in Fig.1(d).
Fig. 2.  (a) A bright-field TEM image of the R20 sample with another type of FCC lamella inside. (b) The SAED pattern taken from the interface of the HCP and FCC phases in (a), showing the HCP to FCC phase transformation with the OR of [0001]HCP//[001]FCC and (10$\bar{1}$0)HCP//(110)FCC. (c) An HRTEM image of the interface of the HCP and FCC phases, with the inset being a Fourier filtered image taken from the area marked by the square. (d) A bright-filed TEM image of a {101-2}<$\bar{1}$011> deformation twin, and the insets in the upper left and lower right corners are an SAED pattern and an HRTEM image of the {101-2}<$\bar{1}$011> twin, respectively.
Fig. 3.  (a) A bright-field TEM image of the R40 sample. (b) An SAED pattern taken from the FCC area b in (a). (c) A dark-field TEM image using the reflection marked by the white arrow in (b). (d) An SAED pattern taken from the interface between the HCP and FCC area d in (a). (e) An SAED pattern taken from the HCP matrix area e in (a).
Fig. 4.  (a) A bright-field TEM image of the HCP matrix in the R40 sample. (b, c) SAED patterns taken from the areas b and c marked by red dotted circles in (a), respectively.
Fig. 5.  (a) A bright-field TEM image of the R60 sample for the HCP matrix, with the inset being an SAED pattern obtained from the area outlined by a red dotted circle. (b) A dark-field TEM image of (a) using the reflection marked by the red circle in the inset of (a). (c) A bright-field TEM image of the R60 sample for the FCC structure and the inset is a corresponding SAED pattern. (d) The grain size distribution of the FCC structure in the R60 sample.
Fig. 6.  (a) An HRTEM image of zero macroscopic strain twins with the 9R structure. The inset is a Fourier filtered image taken from the area marked by the square. (b) Another HRTEM image of the 9R structure, with the inset being an FFT pattern taken from the area marked by the square. (c) An HRTEM image observed in a large area of the FCC structure in the R40 sample, and (d) an enlarged HRTEM image corresponding to the area marked by the square in (c).
Fig. 7.  Schematics for the formation of ITBs and the 9R structure. (a) Schematics of the b1, b2, b3 partials for the HCP and FCC structures viewed from [0001]HCP and [111]FCC directions, respectively. (b) Schematic for the HCP to FCC transformation and formation of ITBs and the 9R structures under the action of b1, b2 and b3 partials.
Fig. 8.  (a) A bright-field TEM image of the P-type phase transformation and (b) an HRTEM image taken from the area marked by the square in (a). (c) An HRTEM image of deformation twins with macroscopic strain observed in the FCC structure corresponding to the P-type phase transformation.
Fig. 9.  (a,b) Atomic schematics of the lattice parameters and ORs for the two types of HCP to FCC phase transformations. (c,d) Fourier filtered HRTEM images of the interfaces of the HCP and the FCC phases for two types of phase transformations.
Fig. 10.  (a) A bright-field TEM image containing both the B-type and the P-type phase transformations, with the inset being an SAED pattern taken from the area outlined by the white box. (b) An HRTEM image corresponding to the area outlined by the box in (a). (c) Another HRTEM image containing the two types of phase transformations. (d) Another HRTEM image in a large area of the FCC structure in the R40 sample.
Fig. 11.  (a) A schematic of the experimental observed OR for the B-type phase trans-formation. (b,c) Schematics of the OR viewed along two other directions of the B typephase transformation.
Fig. 12.  (a) A schematic of the experimental observed OR for the P-type phase trans-formation. (b,c) Schematics of the OR viewed along two other directions of the P typephase transformation.
Fig. 13.  (a) An HRTEM image observed in a large area of the FCC structure. (b,c,d) are enlarged HRTEM images corresponding to the areas indicated by the numbers 1, 2, and 3, respectively.
[1] R. Valiev, Nat. Mater. 3 (2004) 511.
pmid: 15286754
[2] A. Staroselsky, L. Anand, Int. J. Plast. 19 (2003) 1843-1864.
[3] X. Liao, J. Wang, J. Nie, Y. Jiang, P. Wu, MRS Bull. 41 (2016) 314-319.
[4] V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Nat. Mater. 3 (2004) 43-47.
pmid: 14704784
[5] Y. Cao, S. Ni, X. Liao, M. Song, Y. Zhu, Mater. Sci. Eng., R 133 (2018) 1-59.
[6] Y. Zhu, X. Liao, X. Wu, Prog. Mater. Sci. 57 (2012) 1-62.
doi: 10.1016/j.pmatsci.2011.05.001
[7] M.H. Yoo, Metall. Trans. A 12 (1981) 409-418.
[8] J. Gong, T.B. Britton, M.A. Cuddihy F.P.E. Dunne, A.J. Wilkinson, Acta Mater. 96 (2015) 249-257.
doi: 10.1016/j.actamat.2015.06.020
[9] H. Zhao, M. Song, S. Ni, S. Shao, J. Wang, X. Liao, Acta Mater. 131 (2017) 271-279.
doi: 10.1016/j.actamat.2017.03.058
[10] H. Zhao, X. Hu, M. Song, S. Ni, Scripta Mater. 132 (2017) 63-67.
doi: 10.1016/j.scriptamat.2017.01.034
[11] X. Wu, N. Tao, Y. Hong, G. Liu, B. Xu, J. Lu, K. Lu, Acta Mater. 53 (2005) 681-691.
doi: 10.1016/j.actamat.2004.10.021
[12] G.P. Zheng, Y.M. Wang, M. Li, Acta Mater. 53 (2005) 3893-3901.
doi: 10.1016/j.actamat.2005.04.038
[13] T. Waitz H.J.Am. Karnthaler, Acta Mater. 45 (1997) 837-847.
doi: 10.1016/S1359-6454(96)00184-X
[14] Y. Liu, H. Yang, G. Tan, S. Miyazaki, B. Jiang, Y. Liu, J. Alloys. Compd. 368 (2004) 157-163.
doi: 10.1016/j.jallcom.2003.07.015
[15] D.H. Hong, T.W. Lee, S.H. Lim, W.Y. Kim, S.K. Hwang, Scripta Mater. 69 (2013) 405-408.
doi: 10.1016/j.scriptamat.2013.05.038
[16] X. Zheng, M. Gong, T. Xiong, H. Ge, L. Yang, Y. Zhou, S. Zheng, J. Wang, X. Ma, Scripta Mater. 162 (2019) 326-330.
doi: 10.1016/j.scriptamat.2018.11.037
[17] H.C. Wu, A. Kumar, J. Wang, X.F. Bi, C.N. Tomé, Z. Zhang, S.X. Mao, Sci. Rep. 6 (2016) 24370.
doi: 10.1038/srep24370 pmid: 27067515
[18] Y. Koizumi, T. Fujita, Y. Minamino, S. Hata, Acta Mater. 58 (2010) 1104-1115.
doi: 10.1016/j.actamat.2009.10.027
[19] R. Jing, C. Liu, M. Ma, R. Liu, J. Alloys. Compd. 552 (2013) 202-207.
doi: 10.1016/j.jallcom.2012.10.083
[20] R. Jing, S. Liang, C. Liu, M. Ma, R. Liu, Mater. Sci. Eng., A 559 (2013) 474-479.
[21] X.-S. Yang, S. Sun, X.-L. Wu, E. Ma, T.-Y. Zhang, Sci. Rep. 4 (2014) 6141.
pmid: 25142283
[22] X.-S. Yang, S. Sun, T.-Y. Zhang, Acta Mater. 95 (2015) 264-273.
[23] H. Zheng, J. Wang, J.Y. Huang, J. Wang, Z. Zhang, S.X. Mao, Nano Lett. 13 (2013) 6023-6027.
doi: 10.1021/nl403240r pmid: 24274356
[24] http://www.znxc.cn/, Zhong Nuo New Materials Technologies Inc.
[25] J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J. Huang, J. Hirth, Acta Mater. 58 (2010) 2262-2270.
doi: 10.1016/j.actamat.2009.12.013
[26] X. Wu, X. Liao, S. Srinivasan, F. Zhou, E. Lavernia, R. Valiev, Y. Zhu, Phys. Rev. Lett. 100 (2008), 095701.
pmid: 18352724
[27] B. Wei, S. Ni, Y. Liu, M. Song, Scripta Mater. 169 (2019) 46-51.
[28] L. Xiao, Mater. Sci. Eng., A 394 (2005) 168-175.
[29] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, Acta Mater. 46 (1998) 3317-3331.
[30] X. Wu, N. Tao, Y. Hong, B. Xu, J. Lu, K. Lu, Acta Mater. 50 (2002) 2075-2084.
[31] D. Yang, P. Cizek, P. Hodgson, C. Wen, Acta Mater. 58 (2010) 4536-4548.
[32] H. Zhao, S. Ni, M. Song, X. Xiong, X. Liang, H. Li, Mater. Sci. Eng., A 645 (2015) 328-332.
[33] Q. Xue G. Gray III, Metall. Mater. Trans. A 37 (2006) 2435-2446.
[34] N. Tao, K. Lu, Scripta Mater. 60 (2009) 1039-1043.
[35] K. Wang, N. Tao, G. Liu, J. Lu, K. Lu, Acta Mater. 54 (2006) 5281-5291.
[36] W. Wu, M. Song, S. Ni, J. Wang, Y. Liu, B. Liu, X. Liao, Sci. Rep. 7 (2017) 46720.
doi: 10.1038/srep46720 pmid: 28429759
[37] Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavernia, S.P. Ringer, Z. Horita, T.G. Langdon, Y.T. Zhu, Mater. Sci. Eng., A 527 (2010) 4959-4966.
doi: 10.1016/j.msea.2010.04.036
[38] J. Wang, O. Anderoglu, J. Hirth, A. Misra, X. Zhang, Appl. Phys. Lett. 95 (2009), 021908.
[39] L. Liu, J. Wang, S.K. Gong, S.X. Mao, Phys. Rev. Lett. 106 (2011), 175504.
doi: 10.1103/PhysRevLett.106.175504 pmid: 21635047
[40] J. Wang, A. Misra, J.P. Hirth, Phys. Rev. B 83 (2011), 021908-021908-3.
[41] Y.T. Zhu, X.Z. Liao, X.L. Wu, J. Mater. Eng. Perform. 14 (2005) 467-472.
doi: 10.1361/105994905X56269
[42] J. Rittner, D. Seidman, K. Merkle, Phys. Rev. B 53 (1996) R4241.
[43] G. Lucadamo, D. Medlin, Science 300 (2003) 1272-1275.
doi: 10.1126/science.1083890 pmid: 12764193
[44] X. An, M. Song, Y. Huang, X. Liao, S. Ringer, T. Langdon, Y. Zhu, Scripta Mater. 72 (2014) 35-38.
[45] X.Y. Zhang, X.L. Wu, A.W. Zhu, Appl. Phys. Lett. 94 (2009) 5062.
[46] X.H. An, Q.Y. Lin, S.D. Wu, Z.F. Zhang, Scripta Mater. 68 (2013) 988-991.
[47] N. Li, J. Wang, J.Y. Huang, A. Misra, X. Zhang, Scripta Mater. 64 (2011) 149-152.
[48] X.L. Ma, H. Zhou, J. Narayan, Y.T. Zhu, Scripta Mater. 109 (2015) 89-93.
[49] X.Z. Liao, F. Zhou, E.J. Lavernia, S.G. Srinivasan, M.I. Baskes, D.W. He, Y.T. Zhu, Appl. Phys. Lett. 83 (2003) 632-634.
doi: 10.1063/1.1594836
[50] S. Ni, Y.B. Wang, X.Z. Liao, H.Q. Li, R.B. Figueiredo, S.P. Ringer, T.G. Langdon, Y.T. Zhu, Phys. Rev. B 84 (2011), 235401.
[51] H. Zhang, X. Ou, B. Wei, S. Ni, M. Song, Comput. Mater. Sci. 172 (2020), 109328.
[52] C. Chen, S. Qian, S. Wang, L. Niu, R. Liu, B. Liao, Z. Zhong, P. Lu, P. Li, L. Cao, Y. Wu, Mater. Charact. 136 (2018) 257-263.
[53] H. Zhao, S. Ni, M. Song, Mater. Sci. Eng., A 660 (2016) 34-38.
[54] S. Xiong, W. Qi, B. Huang, M. Wang, L. Wei, J. Phys. Chem. C 115 (2011) 10365-10369.
[55] J.W. Christian, S. Mahajan, Prog. Mater. Sci. 39 (1995) 1-157.
[56] K. Luo, S. Ni, M. Song, Int. J. Refract. Met. Hard Mater. 75 (2018) 107-110.
[57] E. Metzbower, Metall. Mater. Trans. B 2 (1971) 3099-3103.
[58] Q. Yu, S. Li, A.M. Minor, J. Sun, E. Ma, Appl. Phys. Lett. 100 (2012), 063109.
[59] E.O. Ezugwu, Z.M. Wang, J. Mater. Process. Technol. 68 (1997) 262-274.
doi: 10.1016/S0924-0136(96)00030-1
[1] Fan Jiangkun, Zhang Zhixin, Gao Puyi, Yang Ruimeng, Li Huan, Tang Bin, Kou Hongchao, Zhang Yudong, Esling Claude, Li Jinshan. On the nature of a peculiar initial yield behavior in metastable β titanium alloy Ti-5Al-5Mo-5V-3Cr-0.5Fe with different initial microstructures[J]. 材料科学与技术, 2020, 38(0): 135-147.
[2] Y.Z. Zhang, J.J. Wang, N.R. Tao. Tensile ductility and deformation mechanisms of a nanotwinned 316L austenitic stainless steel[J]. 材料科学与技术, 2020, 36(0): 65-69.
[3] Chaoyu Han, Shibo Wen1, Feng Ye, Wenjia Wu, Shaowei Xue, Yongfeng Liang, Binbin Liu, Junpin Lin. Deformation twinning in equiaxed-grained Fe-6.5 wt.%Si alloy after rotary swaging[J]. 材料科学与技术, 2020, 49(0): 25-34.
[4] Piao Gao, Wenpu Huang, Huihui Yang, Guanyi Jing, Qi Liu, Guoqing Wang, Zemin Wang, Xiaoyan Zeng. Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5Y alloy produced by selective laser melting[J]. 材料科学与技术, 2020, 39(0): 144-154.
[5] S.J. Tsianikas, Y. Chen, Z. Xie. Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings[J]. 材料科学与技术, 2020, 39(0): 183-189.
[6] S.J. Tsianikas, Y. Chen, Z. Xie. Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings[J]. 材料科学与技术, 2020, 39(0): 7-13.
[7] Xinglong An, Hao Zhang, Song Ni, Xiaoqin Ou, Xiaozhou Liao, Min Song. Effects of temperature and alloying content on the phase transformation and {10$\bar{1}$1} twinning in Zr during rolling[J]. 材料科学与技术, 2020, 41(0): 76-80.
[8] H.T. Jeong, W.J. Kim. Grain size and temperature effect on the tensile behavior and deformation mechanisms of non-equiatomic Fe41Mn25Ni24Co8Cr2 high entropy alloy[J]. 材料科学与技术, 2020, 42(0): 190-202.
[9] Ruifeng Dong, Jinshan Li, Hongchao Kou, Jiangkun Fan, Yuhong Zhao, Hua Hou, Li Wu. ω-Assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy[J]. 材料科学与技术, 2020, 44(0): 24-30.
[10] Liu Liu, Jie Meng, Jinlai Liu, Mingke Zou, Haifeng Zhang, Xudong Sun, Yizhou Zhou. Influences of Re on low-cycle fatigue behaviors of single crystal superalloys at intermediate temperature[J]. 材料科学与技术, 2019, 35(9): 1917-1924.
[11] Jianfeng Wang, Hongbo Zhou, Liguo Wang, Shijie Zhu, Shaokang Guan. Microstructure, mechanical properties and deformation mechanisms of an as-cast Mg-Zn-Y-Nd-Zr alloy for stent applications[J]. 材料科学与技术, 2019, 35(7): 1211-1217.
[12] Meiqiong Ou, Yingche Ma, Weiwei Xing, Xianchao Hao, Bo Chen, Leilei Ding, Kui Liu. Stress rupture properties and deformation mechanisms of K4750 alloy at the range of 650 °C to 800 °C[J]. 材料科学与技术, 2019, 35(7): 1270-1277.
[13] Xiaoying Shi, Yangxin Li, Xiaoqin Zeng, Yong Liu, Bin Chen, Jian Lu, Dejiang Li. Deformation mechanism and dynamic precipitation in a Mg-7Al-2Sn alloy processed by surface mechanical attrition treatment[J]. 材料科学与技术, 2019, 35(7): 1473-1478.
[14] X.H. Zeng, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructural evolution of aluminum alloy during friction stir welding under different tool rotation rates and cooling conditions[J]. 材料科学与技术, 2019, 35(6): 972-981.
[15] Cong Liu, Wenyi Peng, C.S. Jiang, Hongmin Guo, Jun Tao, Xiaohua Deng, Zhaoxia Chen. Composition and phase structure dependence of mechanical and magnetic properties for AlCoCuFeNix high entropy alloys[J]. 材料科学与技术, 2019, 35(6): 1175-1183.
[1] Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel[J]. J. Mater. Sci. Technol., 2020, 47(0): 1 -9 .
[2] Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa[J]. J. Mater. Sci. Technol., 2020, 47(0): 10 -19 .
[3] Wenjing Long, Haining Li, Bing Yang, Nan Huang, Lusheng Liu, Zhigang Gai, Xin Jiang. Research Article Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling’[J]. J. Mater. Sci. Technol., 2020, 48(0): 1 -8 .
[4] Long Chen, Chengtao Yang, Chaoyi Yan. High-performance UV detectors based on 2D CVD bismuth oxybromide single-crystal nanosheets[J]. J. Mater. Sci. Technol., 2020, 48(0): 100 -104 .
[5] Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres[J]. J. Mater. Sci. Technol., 2020, 48(0): 105 -113 .
[6] Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure[J]. J. Mater. Sci. Technol., 2020, 48(0): 114 -122 .
[7] Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd[J]. J. Mater. Sci. Technol., 2020, 48(0): 123 -129 .
[8] Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity[J]. J. Mater. Sci. Technol., 2020, 48(0): 130 -139 .
[9] Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 140 -145 .
[10] H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 146 -155 .
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.