J. Mater. Sci. Technol. ›› 2021, Vol. 70: 113-124.DOI: 10.1016/j.jmst.2020.06.039
• Research Article • Previous Articles Next Articles
Yinling Zhanga,b, Zhuo Chenc, Shoujiang Qua,d,*(), Aihan Fenga,d, Guangbao Mie, Jun Shena,f, Xu Huange, Daolun Chenb,**(
)
Received:
2019-12-02
Revised:
2020-04-26
Accepted:
2020-06-05
Published:
2021-04-20
Online:
2021-04-30
Contact:
Shoujiang Qu,Daolun Chen
About author:
dchen@ryerson.ca(D. Chen).Yinling Zhang, Zhuo Chen, Shoujiang Qu, Aihan Feng, Guangbao Mi, Jun Shen, Xu Huang, Daolun Chen. Multiple α sub-variants and anisotropic mechanical properties of an additively-manufactured Ti-6Al-4V alloy[J]. J. Mater. Sci. Technol., 2021, 70: 113-124.
Ti | Al | V | Fe | O | N | C | H |
---|---|---|---|---|---|---|---|
Bal. | 6.28 | 3.99 | 0.22 | 0.076 | 0.025 | 0.013 | <0.0010 |
Table 1 Chemical composition of Ti-6Al-4V powders (wt.%).
Ti | Al | V | Fe | O | N | C | H |
---|---|---|---|---|---|---|---|
Bal. | 6.28 | 3.99 | 0.22 | 0.076 | 0.025 | 0.013 | <0.0010 |
Fig. 1. (a) Schematic illustration of powder deposition geometry in the 3D-printing process via selective electron beam melting along with the extracted directions of the cylinders. (b) Test sample geometry and dimensions (in mm) used in the present tensile and fatigue experiments.
Fig. 2. (a) Orientation map of α (hcp) and β (bcc) phases with IPF-Y coloring for the 3D-printed Ti-6Al-4V alloy; (b) schematic of Burgers orientation relationship (BOR) between α (hcp) and β (bcc); (c) discrete orientation maps of six α variants extracted from (a); (d) {0001} pole figure of α; (e) {110} pole figure of β; (f) the corresponding pole figure about six α variants following the BOR.
Variant | Plane parallel | Sub-variants defined by the direction parallel | ||
---|---|---|---|---|
α1 | (110)β // (0001)α | [ | [ | [ |
α2 | (1-10)β // (0001)α | [ | [ | [ |
α3 | (101)β // (0001)α | [ | [ | [ |
α4 | (10-1)β // (0001)α | [ | [ | [ |
α5 | (01-1)β // (0001)α | [ | [ | [ |
α6 | (011)β // (0001)α | [ | [ | [ |
Table 2 Six α variants (α1-α6) and the relevant sub-variants between β(bcc) matrix and α(hcp) phase based on the Burgers orientation relationship (BOR).
Variant | Plane parallel | Sub-variants defined by the direction parallel | ||
---|---|---|---|---|
α1 | (110)β // (0001)α | [ | [ | [ |
α2 | (1-10)β // (0001)α | [ | [ | [ |
α3 | (101)β // (0001)α | [ | [ | [ |
α4 | (10-1)β // (0001)α | [ | [ | [ |
α5 | (01-1)β // (0001)α | [ | [ | [ |
α6 | (011)β // (0001)α | [ | [ | [ |
Fig. 3. (a) Typical engineering stress-strain curves and (b) strain-rate sensitivity as a function of true strain of the present SEBM-manufactured horizontally and vertically-orientated Ti-6Al-4V alloy.
Strain rate, s-1 | Orientation | σy, MPa | σUTS, MPa | Elongation, % |
---|---|---|---|---|
1 × 10-4 | Horizontal | 893 ± 2.5 | 977 ± 1.5 | 11.7 ± 0.3 |
Vertical | 960 ± 3 | 1034 ± 3 | 10.0 ± 4 | |
1 × 10-3 | Horizontal | 953 ± 3 | 994 ± 3.5 | 13.4 ± 1.6 |
Vertical | 1020 ± 7 | 1040 ± 9 | 7.0 ± 3.5 | |
1 × 10-2 | Horizontal | 973 ± 7 | 1007 ± 8 | 13.6 ± 2.4 |
Vertical | 1022 | 1059 | 9.6 |
Table 3 Tensile properties of SEBM-manufactured Ti-6Al-4V alloy in the horizontal and vertical directions, which were obtained at different strain rates at room temperature.
Strain rate, s-1 | Orientation | σy, MPa | σUTS, MPa | Elongation, % |
---|---|---|---|---|
1 × 10-4 | Horizontal | 893 ± 2.5 | 977 ± 1.5 | 11.7 ± 0.3 |
Vertical | 960 ± 3 | 1034 ± 3 | 10.0 ± 4 | |
1 × 10-3 | Horizontal | 953 ± 3 | 994 ± 3.5 | 13.4 ± 1.6 |
Vertical | 1020 ± 7 | 1040 ± 9 | 7.0 ± 3.5 | |
1 × 10-2 | Horizontal | 973 ± 7 | 1007 ± 8 | 13.6 ± 2.4 |
Vertical | 1022 | 1059 | 9.6 |
Fig. 5. (a) Schmid factor (SF) map of α phase along the <11-20> directions on the (0001) plane with a stress applied along the horizontal direction and (b) the corresponding SF maps of individual α variants; (c) SF map of α phase along the <11-20> direction on the (0001) plane with a stress applied along the vertical direction and (d) the corresponding SF maps of individual α variants.
Fig. 6. Optical micrographs of the present SEBM-manufactured Ti-6Al-4V alloy in (a) XOZ plane and (b) XOY plane; schematic illustration showing the orientation of a lack-of-fusion defect in (c) horizontal and (d) vertical samples, respectively.
Fig. 7. (a) Stress amplitude and (b) plastic strain amplitude versus the number of cycles of SEBM-manufactured Ti-6Al-4V alloy in the horizontal direction tested at different total strain amplitudes at a strain ratio of Rε = -1.
Fig. 8. Total strain amplitude versus the number of cycles to failure for the SEBM-manufactured Ti-6Al-4V alloy in the horizontal direction, in comparison with the results in the vertical direction [48] and other additively manufactured Ti-6Al-4V alloys reported in the literature [73,74].
Low cycle fatigue parameters | Symbol | Horizontal direction | Vertical direction |
---|---|---|---|
Cycle strain hardening exponent | n’ | 0.088 | 0.063 |
Cyclic strength coefficient, MPa | K’ | 1460 | 1337 |
Fatigue strength coefficient, MPa | σ'f | 2327 | 3600 |
Fatigue strength exponent | b | -0.14 | -0.19 |
Fatigue ductility coefficient | ε'f | 89.4 | 21.2 |
Fatigue ductility exponent | c | -1.49 | -1.48 |
Table 4 Low cycle fatigue parameters of the SEBM-manufactured Ti-6Al-4V alloy in the horizontal and vertical directions.
Low cycle fatigue parameters | Symbol | Horizontal direction | Vertical direction |
---|---|---|---|
Cycle strain hardening exponent | n’ | 0.088 | 0.063 |
Cyclic strength coefficient, MPa | K’ | 1460 | 1337 |
Fatigue strength coefficient, MPa | σ'f | 2327 | 3600 |
Fatigue strength exponent | b | -0.14 | -0.19 |
Fatigue ductility coefficient | ε'f | 89.4 | 21.2 |
Fatigue ductility exponent | c | -1.49 | -1.48 |
Fig. 10. Cyclic stress-strain curve (CSSC) for the SEBM-manufactured Ti-6Al-4V alloy along both horizontal and vertical directions, where the two corresponding monotonic stress-strain curves obtained at a strain rate of 1 × 10-2 s-1 are also potted for comparison.
Fig. 12. SEM micrographs of the SEBM-manufactured Ti-6Al-4V alloy in the vertical direction tested at a strain amplitude of 0.4 %: (a) overall fracture surface; (b) Place A in (a); (c) Place B in (a); (d) overall fracture surface of the SEBM-manufactured Ti-6Al-4V alloy in the horizontal direction also tested at a strain amplitude of 0.4 %.
Fig. 13. SEM micrographs of the SEBM-manufactured Ti-6Al-4V alloy in the horizontal direction tested at a strain amplitude of (a, b) 0.4 % and (c, d, e, f) 1.0 %, respectively, where (a) and (c) show an overall view containing the crack initiation site, while (b) and (d) show the typical fatigue crack propagation characteristics; (e) unmelted zones and (f) dimple feature in the fast propagation zone.
[1] |
T.M. Pollock, Nat. Mater., 15(2016), pp. 809-815.
DOI URL |
[2] |
R. Jones, R.K.S. Raman, A.P. Iliopoulos, J.G. Michopoulos, N. Phan, D. Peng, Int. J. Fatigue, 124(2019), pp. 227-235.
DOI URL |
[3] |
C. Cui, B.M. Hu, L. Zhao, S. Liu, Mater. Des., 32(2011), pp. 1684-1691.
DOI URL |
[4] |
L. Lan, X. Jin, S. Gao, B. He, Y. Rong, J. Mater. Sci. Technol., 50(2020), pp. 153-161.
DOI URL |
[5] |
X. He, Y. Li, Y. Bi, X. Liu, B. Zhou, S. Zhang, S. Li, J. Mater. Sci. Technol., 44(2020), pp. 191-200.
DOI URL |
[6] | X. Ji, B. Guo, F. Jiang, H. Yu, D. Fu, J. Teng, H. Zhang, J.J. Jonas, J. Mater. Sci. Technol., 36(2020), pp. 160-166. |
[7] | S. Liu, Y.C. Shin, Mater. Des ., 164(2019), Article 107552. |
[8] |
H. Attar, M.J. Bermingham, S. Ehtemam-Haghighi, A. Dehghan-Manshadi, D. Kent, M.S. Dargusch, Mater. Sci. Eng. A, 760(2019), pp. 339-345.
DOI URL |
[9] |
S. Cao, Q. Hu, A. Huang, Z. Chen, M. Sun, J. Zhang, C. Fu, Q. Jia, C.V.S. Lim, R.R. Boyer, Y. Yang, X. Wu, J. Mater. Sci. Technol., 35(2019), pp. 1578-1586.
DOI URL |
[10] | D. Ren, S. Li, H. Wang, W. Hou, Y. Hao, W. Jin, R. Yang, R.D.K. Misra, L.E. Murr, J. Mater. Sci. Technol., 35(2019), pp. 285-294. |
[11] |
A.H. Chern, P. Nandwana, T. Yuan, M.M. Kirka, R.R. Dehoff, P.K. Liaw, C.E. Duty, Int. J. Fatigue, 119(2019), pp. 173-184.
DOI URL |
[12] |
A. Ataee, Y. Li, D. Fraser, G. Song, C. Wen, Mater. Des., 137(2018), pp. 345-354.
DOI URL |
[13] |
A.E. Wilson-Heid, S. Qin, A.M. Beese, Mater. Sci. Eng. A, 738(2018), pp. 90-97.
DOI URL |
[14] | L. Zhang, Y. Liu, S. Li, Y. Hao, Adv. Eng. Mater., 20(2018), 1700842. |
[15] | D. Zhang, S. Sun, D. Qiu, M.A. Gibson, M.S. Dargusch, M. Brandt, M. Qian, M. Easton, Adv. Eng. Mater., 20 (2018), Article 1700952. |
[16] |
X. Zhao, S. Li, M. Zhang, Y. Liu, T.B. Sercombe, S. Wang, Y. Hao, R. Yang, L.E. Murr, Mater. Des., 95(2016), pp. 21-31.
DOI URL |
[17] |
K. Yang, J. Wang, L. Jia, G. Yang, H. Tang, Y. Li, J. Mater. Sci. Technol., 35(2019), pp. 303-308.
DOI URL |
[18] |
Z. Liu, Z.B. Zhao, J.R. Liu, L. Wang, S.X. Zhu, G. Yang, S.L. Gong, Q.J. Wang, R. Yang, J. Mater. Sci. Technol., 35(2019), pp. 2552-2558.
DOI URL |
[19] |
S. Zhang, Y. Ma, S. Huang, S.S. Youssef, M. Qi, H. Wang, J. Qiu, J. Lei, R. Yang, J. Mater. Sci. Technol., 35(2019), pp. 1681-1690.
DOI URL |
[20] |
V. Chastand, P. Quaegebeur, W. Maia, E. Charkaluk, Mater. Charact., 143(2018), pp. 76-81.
DOI URL |
[21] | H. Galarraga, D.A. Lados, R.R. Dehoff, M.M. Kirka, P. Nandwana, Addit. Manuf., 10(2016), pp. 47-57. |
[22] |
P. Li, D.H. Warner, A. Fatemi, N. Phan, Int. J. Fatigue, 85(2016), pp. 130-143.
DOI URL |
[23] |
E. Uhlmann, R. Kersting, T.B. Klein, M.F. Cruz, A.V. Borille, Procedia Cirp, 35(2015), pp. 55-60.
DOI URL |
[24] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater., 117(2016), pp. 371-392.
DOI URL |
[25] |
D. Greitemeier, F. Palm, F. Syassen, T. Melz, Int. J. Fatigue, 94(2017), pp. 211-217.
DOI URL |
[26] |
R. Molaei, A. Fatemi, N. Phan, Int. J. Fatigue, 117(2018), pp. 352-370.
DOI URL |
[27] |
Y. Yang, Y.J. liu, J. Chen, H.L. Wang, Z.Q. Zhang, Y.J. Lu, S.Q. Wu, J.X. Lin, Mater. Sci. Eng. A, 707(2017), pp. 548-558.
DOI URL |
[28] |
Y.M. Ren, X. Lin, P.F. Guo, H.O. Yang, H. Tan, J. Chen, J. Li, Y.Y. Zhang, W.D. Huang, Int. J. Fatigue, 127(2019), pp. 58-73.
DOI URL |
[29] |
H. Yu, F. Li, Z. Wang, X. Zeng, Int. J. Fatigue, 120(2019), pp. 175-183.
DOI URL |
[30] | C. Zhao, K. Fezzaa, R.W. Cunningham, H. Wen, F. De Carlo, L. Chen, A.D. Rollett, T. Sun, Sci. Rep.(2017), pp. 1-11. |
[31] |
P. Li, D.H. Warner, J.W. Pegues, M.D. Roach, N. Shamsaei, N. Phan, Int. J. Fatigue, 126(2019), pp. 284-296.
DOI URL |
[32] |
T. Kakiuchi, R. Kawaguchi, M. Nakajima, M. Hojo, K. Fujimoto, Y. Uematsu, Int. J. Fatigue, 126(2019), pp. 55-61.
DOI URL |
[33] |
K.F. Walker, Q. Liu, M. Brandt, Int. J. Fatigue, 104(2017), pp. 302-308.
DOI URL |
[34] |
T. Persenot, A. Burr, G. Martin, J.Y. Buffiere, R. Dendievel, E. Maire, Int. J. Fatigue, 118(2019), pp. 65-76.
DOI URL |
[35] |
B.E. Carroll, T.A. Palmer, A.M. Beese, Acta Mater., 87(2015), pp. 309-320.
DOI URL |
[36] |
H. Tan, M. Guo, A.T. Clare, X. Lin, J. Chen, W. Huang, J. Mater. Sci. Technol., 35(2019), pp. 2027-2037.
DOI URL |
[37] |
Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, S.B. Tor, Mater. Des., 139(2018), pp. 565-586.
DOI URL |
[38] |
Y. Zhai, H. Galarraga, D.A. Lados, Eng. Fail. Anal., 69(2016), pp. 3-14.
DOI URL |
[39] | P. Edwards, A. O’Conner, M. Ramulu, J. Manuf. Sci. Eng., 135(2013), Article 061016. |
[40] |
J. Yang, H. Yu, Z. Wang, X. Zeng, Mater. Charact., 127(2017), pp. 137-145.
DOI URL |
[41] |
M. Simonelli, Y.Y. Tse, C. Tuck, Metall. Mater. Trans. A, 45(2014), pp. 2863-2872.
DOI URL |
[42] | M. Qian, W. Xu, M. Brandt, H.P. Tang, MRS Bull . ( 2019), pp. 775-784. |
[43] |
C. de Formanoir, S. Michotte, O. Rigo, L. Germain, S. Godet, Mater. Sci. Eng. A, 652(2016), pp. 105-119.
DOI URL |
[44] |
Z.B. Zhao, Q.J. Wang, Q.M. Hu, J.R. Liu, B.B. Yu, R. Yang, Acta Mater., 126(2017), pp. 372-382.
DOI URL |
[45] |
G.C. Obasi, S. Birosca, J. Quinta Da Fonseca, M. Preuss, Acta Mater., 60(2012), pp. 1048-1058.
DOI URL |
[46] |
X. Tan, Y. Kok, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong, C.K. Chua, Acta Mater., 97(2015), pp. 1-16.
DOI URL |
[47] | S.A. Mantri, R. Banerjee, Addit. Manuf., 23(2018), pp. 86-98. |
[48] | Y.L. Zhang, Z. Chen, S.J. Qu, A.H. Feng, G.B. Mi, J. Shen, X. Huang, D.L. Chen, J. Alloys Compd., 825(2020), Article 153971. |
[49] |
Z. Liu, Z. Zhao, J. Liu, L. Wang, G. Yang, S. Gong, Q. Wang, R. Yang, Mater. Sci. Eng. A, 742(2019), pp. 508-516.
DOI URL |
[50] |
X. Wang, K. Chou, J. Alloys Compd., 748(2018), pp. 236-244.
DOI URL |
[51] |
K. Gofryk, S. Du, C.R. Stanek, J.C. Lashley, X. Liu, R.K. Schulze, J.L. Smith, D.J. Safarik, D.D. Byler, K.J. Mcclellan, B.P. Uberuaga, B.L. Scott, D.A. Andersson, Nat. Commun., 5(2014), p. 4551.
DOI URL |
[52] |
A.K. McCurdy, H.J. Maris, C. Elbaum, Phys. Rev. B, 2(1970), pp. 4077-4083.
DOI URL |
[53] |
W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, Int. Mater. Rev., 61(2016), pp. 315-360.
DOI URL |
[54] |
D.G. Leo Prakash, P.Honniball, D. Rugg, P.J. Withers, J. Quinta Da Fonseca, M. Preuss, Acta Mater., 61(2013), pp. 3200-3213.
DOI URL |
[55] |
G.C. Obasi, J.Q. da Fonseca, D. Rugg, M. Preuss, Mater. Sci. Eng. A, 576(2013), pp. 272-279.
DOI URL |
[56] |
M.R. Daymond, R.A. Holt, S. Cai, P. Mosbrucker, S.C. Vogel, Acta Mater., 58(2010), pp. 4053-4066.
DOI URL |
[57] |
H. Beladi, Q. Chao, G.S. Rohrer, Acta Mater., 80(2014), pp. 478-489.
DOI URL |
[58] |
B. Yue, F. Hong, N. Hirao, R. Vasin, H. Wenk, B. Chen, H. Mao, Proc. Natl. Acad. Sci. U. S. A., 116(2019), pp. 14905-14909.
DOI URL |
[59] |
N. Stanford, P.S. Bate, Acta Mater., 52(2004), pp. 5215-5224.
DOI URL |
[60] |
S.W. Wu, G. Wang, Q. Wang, Y.D. Jia, J. Yi, Q.J. Zhai, J.B. Liu, B.A. Sun, H.J. Chu, J. Shen, P.K. Liaw, C.T. Liu, T.Y. Zhang, Acta Mater., 165(2019), pp. 444-458.
DOI URL |
[61] |
R.O. Ritchie, Nat. Mater., 10(2011), pp. 817-822.
DOI URL |
[62] |
N. Afrin, D.L. Chen, X. Cao, M. Jahazi, Scr. Mater., 57(2007), pp. 1004-1007.
DOI URL |
[63] |
P. Wang, X. Tan, M.L.S. Nai, S.B. Tor, J. Wei, Mater. Des., 95(2016), pp. 287-295.
DOI URL |
[64] | F.A. Mirza, D.L. Chen, S. Zhang, D.L. Zhao (Eds.), Aerospace Materials Handbook, CRC Press/Taylor & Francis Group, Boca Raton, FL, USA(2013), pp. 647-698. |
[65] |
J. Kumar, V. Singh, P. Ghosal, V. Kumar, Mater. Sci. Eng. A, 623(2015), pp. 49-58.
DOI URL |
[66] |
Z. Zhang, D.E. Eakins, F.P.E. Dunne, Int. J. Plast., 79(2016), pp. 196-216.
DOI URL |
[67] |
J. Geng, M.F. Chisholm, R.K. Mishra, K.S. Kumar, Philos. Mag., 95(2015), pp. 3910-3932.
DOI URL |
[68] |
P.R. Dawson, D.E. Boyce, J.S. Park, E. Wielewski, M.P. Miller, Acta Mater., 144(2018), pp. 92-106.
DOI URL |
[69] | G.E. Dieter, Mechanical Metallurgy, ( 3rd ed.), McGraw‐Hill Inc., New York (1986), pp. 387-390. |
[70] |
S. Begum, D.L. Chen, S. Xu, A.A. Luo, Int. J. Fatigue, 31(2009), pp. 726-735.
DOI URL |
[71] |
S. Begum, D.L. Chen, S. Xu, A.A. Luo, Metall. Mater. Trans. A, 39(2008), pp. 3014-3026.
DOI URL |
[72] |
X.Z. Lin, D.L. Chen, Mater. Sci. Eng. A, 496(2008), pp. 106-113.
DOI URL |
[73] |
A. Sterling, N. Shamsaei, B. Torries, S.M. Thompson, Procedia Eng., 133(2015), pp. 576-589.
DOI URL |
[74] |
A.J. Sterling, B. Torries, N. Shamsaei, S.M. Thompson, D.W. Seely, Mater. Sci. Eng. A, 655(2016), pp. 100-112.
DOI URL |
[75] |
S. Romano, A. Brückner-foit, A.Brandão, J. Gumpinger, T. Ghidini, S. Beretta, Eng. Fract. Mech., 187(2018), pp. 165-189.
DOI URL |
[76] |
W. Xu, D. Westerbaan, S.S. Nayak, D.L. Chen, F. Goodwin, E. Biro, Y. Zhou, Mater. Sci. Eng., 553(2012), pp. 51-58.
DOI URL |
[77] | J. Roesler, H. Harders, M. Baeker, Mechanical Behavior of Engineering Materials: Metals, Ceramics, Polymers, Composites, (1st ed.), Springer Publication(2007), pp. 499-535. |
[78] |
S.M.A.K. Mohammed, D.J. Li, X.Q. Zeng, D.L. Chen, Int. J. Fatigue, 125(2019), pp. 1-10.
DOI URL |
[79] |
C. Laird, G.C. Smith, Philos. Mag., 7(1962), pp. 847-857.
DOI URL |
[1] | Bo Song, Zhiwen Du, Ning Guo, Qingshan Yang, Fang Wang, Shengfeng Guo, Renlong Xin. Effect of free-end torsion on microstructure and mechanical properties of AZ31 bars with square section [J]. J. Mater. Sci. Technol., 2021, 69(0): 20-31. |
[2] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[3] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
[4] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[5] | Yu Fu, Wenlong Xiao, Junshuai Wang, Lei Ren, Xinqing Zhao, Chaoli Ma. A novel strategy for developing α + β dual-phase titanium alloys with low Young’s modulus and high yield strength [J]. J. Mater. Sci. Technol., 2021, 76(0): 122-128. |
[6] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[7] | Jin-Yu Zhang, Fu-Zhi Dai, Zhi-Peng Sun, Wen-Zheng Zhang. Structures and energetics of semicoherent interfaces of precipitates in hcp/bcc systems: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2021, 67(0): 50-60. |
[8] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
[9] | Baoxian Su, Binbin Wang, Liangshun Luo, Liang Wang, Yanqing Su, Fuxin Wang, Yanjin Xu, Baoshuai Han, Haiguang Huang, Jingjie Guo, Hengzhi Fu. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74(0): 143-154. |
[10] | Zhixin Zhang, Jiangkun Fan, Ruifeng Li, Hongchao Kou, Zhiyong Chen, Qingjiang Wang, Hailong Zhang, Jian Wang, Qi Gao, Jinshan Li. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet [J]. J. Mater. Sci. Technol., 2021, 75(0): 265-275. |
[11] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
[12] | Pan Wang, Xinwei Li, Shumin Luo, Mui Ling Sharon Nai, Jun Ding, Jun Wei. Additively manufactured heterogeneously porous metallic bone with biostructural functions and bone-like mechanical properties [J]. J. Mater. Sci. Technol., 2021, 62(0): 173-179. |
[13] | Baoxian Su, Liangshun Luo, Binbin Wang, Yanqing Su, Liang Wang, Robert O. Ritchie, Enyu Guo, Ting Li, Huimin Yang, Haiguang Huang, Jingjie Guo, Hengzhi Fu. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 234-248. |
[14] | Hui Wang, Jiaqiang Liu, Chengtao Wang, Steve Guofang Shen, Xudong Wang, Kaili Lin. The synergistic effect of 3D-printed microscale roughness surface and nanoscale feature on enhancing osteogenic differentiation and rapid osseointegration [J]. J. Mater. Sci. Technol., 2021, 63(0): 18-26. |
[15] | Gopinathan Janarthanan, Insup Noh. Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications [J]. J. Mater. Sci. Technol., 2021, 63(0): 35-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||