J. Mater. Sci. Technol. ›› 2021, Vol. 70: 105-112.DOI: 10.1016/j.jmst.2020.09.009
• Research Article • Previous Articles Next Articles
N.N. Jiaoa, Y.X. Laia,*(), S.L. Chenb, P. Gaob, J.H. Chena,*(
)
Received:
2020-04-22
Revised:
2020-06-07
Accepted:
2020-07-07
Published:
2021-04-20
Online:
2021-04-30
Contact:
Y.X. Lai,J.H. Chen
About author:
jhchen123@hnu.edu.cn(J.H. Chen).1These authors equally contribute in this work.
N.N. Jiao, Y.X. Lai, S.L. Chen, P. Gao, J.H. Chen. Atomic-scale roles of Zn element in age-hardened AlMgSiZn alloys[J]. J. Mater. Sci. Technol., 2021, 70: 105-112.
Fig. 3. HRTEM images of the typical precipitates formed in the Zn-free alloy after peak-aging (a) and over-aging (b) at 180 °C. The inset in each image is the corresponding FFT pattern.
Fig. 4. Legend representing the structure models in Fig. 5, Fig. 6 and schematic drawing of the unit cell of β", U2, Q' and β'-2. The characteristic sub-unit(s) of the four phases are marked by dashed-line circles, solid-line hexagons, double-solid-line triangles and dashed-line triangle-like hexagon, respectively.
Fig. 5. Atomic-resolution HAADF-STEM images of β"Zn-precipitate (a) and β"Zn/U2Zn/β'Zn/Q'Zn composite precipitate (c) formed in the Zn-containing alloy peak-aged at 180 °C. (b) and (d) are suggested structure models for the images (a) and (c), respectively. See legend in Fig. 4.
Fig. 6. Atomic-resolution HAADF-STEM images of β"Zn/U2Zn/β'Zn (a) and U2Zn/β'Zn/Q'Zn (c) composite precipitates formed in the Zn-containing alloy over-aged at 180 °C for 36 h. (b) and (d) are suggested structure models for the images (a) and (c), respectively. See legend in Fig. 4.
β'Zn | β'Ag [ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Lattice parameters | a = b =0.690 nm, c =0.405 nm | a = b =0.690 nm, c =0.405 nm | ||||||||
Space group | P-62 m (hexagonal) | P-62 m (hexagonal) | ||||||||
Composition | Mg3Si2Zn4 | Mg3Al3Si2Ag | ||||||||
Atomic position | Atom | x | y | z | Occ. | Atom | x | y | z | Occ. |
Zn1 | 0 | 0 | 0 | 1 | Ag | 0 | 0 | 0 | 1 | |
Si | 1/3 | 2/3 | 1/2 | 1 | Si | 1/3 | 2/3 | 1/2 | 1 | |
Mg | 0.4 | 0.4 | 0 | 1 | Mg | 0.4 | 0.4 | 0 | 1 | |
Zn2 | 0.74 | 0.74 | 1/2 | 1 | Al | 0.74 | 0.74 | 1/2 | 1 |
Table 1 Comparison between the crystal structure of β'Zn and β'Ag unit cells.
β'Zn | β'Ag [ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Lattice parameters | a = b =0.690 nm, c =0.405 nm | a = b =0.690 nm, c =0.405 nm | ||||||||
Space group | P-62 m (hexagonal) | P-62 m (hexagonal) | ||||||||
Composition | Mg3Si2Zn4 | Mg3Al3Si2Ag | ||||||||
Atomic position | Atom | x | y | z | Occ. | Atom | x | y | z | Occ. |
Zn1 | 0 | 0 | 0 | 1 | Ag | 0 | 0 | 0 | 1 | |
Si | 1/3 | 2/3 | 1/2 | 1 | Si | 1/3 | 2/3 | 1/2 | 1 | |
Mg | 0.4 | 0.4 | 0 | 1 | Mg | 0.4 | 0.4 | 0 | 1 | |
Zn2 | 0.74 | 0.74 | 1/2 | 1 | Al | 0.74 | 0.74 | 1/2 | 1 |
[1] |
S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, P.J. Uggowitzer, Acta Mater., 59(2011), pp. 3352-3363.
DOI URL |
[2] |
W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P.D. Smet, A. Haszler, A. Vieregge, Mater. Sci. Eng. A, 280(2000), pp. 37-49.
DOI URL |
[3] |
J.M. Hu, W.G. Zhang, D.F. Fu, J. Teng, H. Zhang, J. Mater. Res. Technol., 8(2019), pp. 5950-5960.
DOI URL |
[4] |
J.M. Hu, J. Teng, X.K. Ji, D.F. Fu, W.G. Zhang, H. Zhang, Mater. Sci. Eng. A, 695(2017), pp. 35-44.
DOI URL |
[5] |
X.K. Ji, H. Zhang, S. Luo, F.L. Jiang, D.F. Fu, Mater. Sci. Eng. A, 649(2016), pp. 128-134.
DOI URL |
[6] |
G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, Acta Mater., 46(1998), pp. 3893-3904.
DOI URL |
[7] |
J.H. Chen, E. Costan, M.A. van Huis, H.W. Zandbergen, Science, 312(2006), pp. 416-419.
DOI URL |
[8] |
H.W. Zandbergen, Science, 277(1997), pp. 1221-1225.
DOI URL |
[9] |
S.J. Andersen, H.W. Zandbergen, J. Jansen, C. Traeholt, U. Tundal, O. Reiso, Acta Mater., 46(1998), pp. 3283-3298.
DOI URL |
[10] |
P.H. Ninive, A. Strandlie, S. Gulbrandsen-Dahl, W. Lefebvre, C.D. Marioara, S.J. Andersen, J. Friis, R. Holmestad, O.M. Løvvik, Acta Mater., 69(2014), pp. 126-134.
DOI URL |
[11] |
R. Vissers, M.A. van Huis, J.Jansen, H.W. Zandbergen, C.D. Marioara, S.J. Andersen, Acta Mater., 55(2007), pp. 3815-3823.
DOI URL |
[12] |
K. Matsuda, Y. Sakaguchi, Y. Miyata, J. Mater. Sci., 35(2000), pp. 179-189.
DOI URL |
[13] | A.G. Frøseth, R. H?ier, P.M. Derlet, S.J. Andersen, C.D. Marioara, Phys. Rev. B, 67(2003), Article 224106. |
[14] |
S.J. Andersen, C.D. Marioara, A. Frøseth, R. Vissers, Mater. Sci. Eng. A, 444(2007), pp. 157-169.
DOI URL |
[15] |
S.J. Andersen, C.D. Marioara, A. Frøseth, R. Vissers, H.W. Zandbergen, Mater. Sci. Eng. A, 390(2005), pp. 127-138.
DOI URL |
[16] |
J.K. Sunde, C.D. Marioara, A.T. J. van Helvoort, R. Holmestad, Mater. Charact., 142(2018), pp. 458-469.
DOI URL |
[17] |
Y.X. Lai, B.C. Jiang, C.H. Liu, Z.K. Chen, C.L. Wu, J.H. Chen, J. Alloys. Compd., 701(2017), pp. 94-98.
DOI URL |
[18] |
Y.X. Lai, W. Fan, M.J. Yin, C.L. Wu, J.H. Chen, J. Mater. Sci. Technol., 41(2020), pp. 127-138.
DOI URL |
[19] |
C.H. Liu, Y.X. Lai, J.H. Chen, G.H. Tao, L.M. Liu, P.P. Ma, C.L. Wu, Scr. Mater., 115(2016), pp. 150-154.
DOI URL |
[20] |
C. Wolverton, Acta Mater., 49(2001), pp. 3129-3142.
DOI URL |
[21] |
M.X. Guo, G. Sha, L.Y. Cao, W.Q. Liu, J.S. Zhang, L.Z. Zhuang, Mater. Chem. Phys., 162(2015), pp. 15-19.
DOI URL |
[22] | T. Saito, S. Wenner, E. Osmumdsen, C.D. Marioara, S.J. Andersen, J. Røyset, W. Lefebvre, R. Holmestad, Philos. Mag. Abingdon (Abingdon), 94(2014), pp. 2410-2425. |
[23] |
X.P. Ding, H. Cui, J.X. Zhang, H.X. Li, M.X. Guo, Z. Lin, L.Z. Zhuang, J.S. Zhang, Mater. Des., 65(2015), pp. 1229-1235.
DOI URL |
[24] |
L. Yan, Y. Zhang, X. Li, Z. Li, F. Wang, H. Liu, B. Xiong, Prog. Nat. Sci. Mater. Int., 24(2014), pp. 97-100.
DOI URL |
[25] |
M.X. Guo, X.K. Zhang, J.S. Zhang, L.Z. Zhuang, J. Mater. Sci., 52(2017), pp. 1390-1404.
DOI URL |
[26] |
S. Zhu, Z.H. Li, L.Z. Yan, X.W. Li, S.H. Huang, H.W. Yan, Y.A. Zhang, B.Q. Xiong, Mater. Charact., 145(2018), pp. 258-267.
DOI URL |
[27] |
T. Saito, F.J.H. Ehlers, W. Lefebvre, D.Hernandez-Maldonado, R. Bjørge, C.D. Marioara, S.J. Andersen, R. Holmestad, Acta Mater., 78(2014), pp. 245-253.
DOI URL |
[28] | C.D. Marioara, J. Nakamura, K. Matsuda, S.J. Andersen, R. Holmestad, T. Sato, T. Kawabata, S. Ikeno, Philos. Mag. Abingdon (Abingdon), 92(2012), pp. 1149-1158. |
[29] |
Y.Y. Weng, L.P. Ding, Z.Z. Zhang, Z.H. Jia, B.Y. Wen, Y.Y. Liu, S. Muraishi, Y.J. Li, Q. Liu, Acta Mater., 180(2019), pp. 301-316.
DOI URL |
[30] | P. Hohenberg, W. Kohn, Phys. Rev. B, 136(1964), pp. 864-871. |
[31] | W. Kohn, L.J. Sham, Phys. Rev. A (Coll Park), 140(1965), pp. 1133-1138. |
[32] |
G. Kresse, J. Hafner, Phys. Rev. B, 47(1993), pp. 558-561.
DOI URL |
[33] |
G. Kresse, J. Furthmller, Phys. Rev. B, 54(1996), pp. 11169-11186.
DOI URL |
[34] |
G. Kresse, D. Joubert, Phys. Rev. B, 59(1999), pp. 1758-1775.
DOI URL |
[35] |
P.E. Blochl, Phys. Rev. B, 50(1994), pp. 17953-17979.
DOI URL |
[36] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77(1996), pp. 3865-3868.
DOI URL |
[37] |
M.A. van Huis, J.H. Chen, H.W. Zandbergen, M.H.F. Sluiter, Acta Mater., 54(2006), pp. 2945-2955.
DOI URL |
[38] |
Z.R. Liu, J.H. Chen, S.B. Wang, D.W. Yuan, M.J. Yin, C.L. Wu, Acta Mater., 59(2011), pp. 7396-7405.
DOI URL |
[39] |
T. Yamazaki, M. Kawasaki, K. Watanabe, I. Hashimoto, M. Shiojiri, Ultramicroscopy, 92(2002), pp. 181-189.
DOI URL |
[40] |
K. Li, A. Be′che, M. Song, G. Sha, X.X. Lu, K. Zhang, Y. Du, S.P. Ringer, D. Schryvers, Scr. Mater., 75(2014), pp. 86-89.
DOI URL |
[41] |
L.P. Ding, Z.H. Jia, J.F. Nie, Y.Y. Weng, L.F. Cao, H.W. Chen, X.Z. Wu, Q. Liu, Acta Mater., 145(2018), pp. 437-450.
DOI URL |
[1] | Xiaofei Cui, Wei Fu, Daqing Fang, Guangli Bi, Zijun Ren, Shengwu Guo, Suzhi Li, Xiangdong Ding, Jun Sun. Mechanical properties and deformation mechanisms of a novel fine-grained Mg-Gd-Y-Ag-Zr-Ce alloy with high strength-ductility synergy [J]. J. Mater. Sci. Technol., 2021, 66(0): 64-73. |
[2] | Yuan Yu, Nannan Xu, Shengyu Zhu, Zhuhui Qiao, Jianbin Zhang, Jun Yang, Weimin Liu. A novel Cu-doped high entropy alloy with excellent comprehensive performances for marine application [J]. J. Mater. Sci. Technol., 2021, 69(0): 48-59. |
[3] | Jiachen Zhang, Lin Liu, Taiwen Huang, Jia Chen, Kaili Cao, Xinxin Liu, Jun Zhang, Hengzhi Fu. Coarsening kinetics of γ′ precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging [J]. J. Mater. Sci. Technol., 2021, 62(0): 1-10. |
[4] | Yifan Wang, Yanli Lu, Jing Zhang, Wenchao Yang, Changlin Yang, Pan Wang, Xiaoqing Song, Zheng Chen. Investigation of the 12 orientations variants of nanoscale Al precipitates in eutectic Si of Al-7Si-0.6Mg alloy [J]. J. Mater. Sci. Technol., 2021, 67(0): 186-196. |
[5] | Jin-Yu Zhang, Fu-Zhi Dai, Zhi-Peng Sun, Wen-Zheng Zhang. Structures and energetics of semicoherent interfaces of precipitates in hcp/bcc systems: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2021, 67(0): 50-60. |
[6] | L. Zhou, C.L. Wu, P. Xie, F.J. Niu, W.Q. Ming, K. Du, J.H. Chen. A hidden precipitation scenario of the θ′-phase in Al-Cu alloys [J]. J. Mater. Sci. Technol., 2021, 75(0): 126-138. |
[7] | Jiang Yang, Honggang Dong, Yueqing Xia, Peng Li, Xiaohu Hao, Yaqiang Wang, Wei Wu, Baosen Wang. Carbide precipitates and mechanical properties of medium Mn steel joint with metal inert gas welding [J]. J. Mater. Sci. Technol., 2021, 75(0): 48-58. |
[8] | Hao Wu, Yunlei Xu, Zhihao Wang, Zhenhua Liu, Qinggang Li, Jinkai Li, Junyan Wu. The influence of solute atom ordering on the deformation behavior of hexagonal close packed Ti-Al alloys [J]. J. Mater. Sci. Technol., 2020, 52(0): 235-242. |
[9] | Zhengliang Liu, Shenglong Zhu, Mingli Shen, Yixuan Jia, Wen Wang, Fuhui Wang. Microstructure and cavitation erosion behavior of sputtered NiCrAlTi coatings with and without N incorporations [J]. J. Mater. Sci. Technol., 2020, 54(0): 211-222. |
[10] | Majid Jafari, Chan-Woo Bang, Jong-Chan Han, Kyeong-Min Kim, Seon-Hyeong Na, Chan-Gyung Park, Byeong-Joo Lee. Evolution of microstructure and tensile properties of cold-drawn hyper-eutectoid steel wires during post-deformation annealing [J]. J. Mater. Sci. Technol., 2020, 41(0): 1-11. |
[11] | Y.X. Lai, W. Fan, M.J. Yin, C.L. Wu, J.H. Chen. Structures and formation mechanisms of dislocation-induced precipitates in relation to the age-hardening responses of Al-Mg-Si alloys [J]. J. Mater. Sci. Technol., 2020, 41(0): 127-138. |
[12] | Kaustubh Bawane, Kathy Lu. Microstructure evolution of nanostructured ferritic alloy with and without Cr3C2 coated SiC at high temperatures [J]. J. Mater. Sci. Technol., 2020, 43(0): 126-134. |
[13] | Y.H. Gao, L.F. Cao, J. Kuang, J.Y. Zhang, G. Liu, J. Sun. Dual effect of Cu on the Al3Sc nanoprecipitate coarsening [J]. J. Mater. Sci. Technol., 2020, 37(0): 38-45. |
[14] | Shuo Wang, Chi Zhang, Xin Li, Houbing Huang, Junsheng Wang. First-principle investigation on the interfacial structure evolution of the δ'/θ'/δ' composite precipitates in Al-Cu-Li alloys [J]. J. Mater. Sci. Technol., 2020, 58(0): 205-214. |
[15] | Xiru Hua, Qiang Yang, Dongdong Zhang, Fanzhi Meng, Chong Chen, Zihao You, Jinghuai Zhang, Shuhui Lv, Jian Meng. Microstructures and mechanical properties of a newly developed high-pressure die casting Mg-Zn-RE alloy [J]. J. Mater. Sci. Technol., 2020, 53(0): 174-184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||