J. Mater. Sci. Technol. ›› 2021, Vol. 70: 125-135.DOI: 10.1016/j.jmst.2020.07.023
• Research Article • Previous Articles Next Articles
Hongliang Sua, Liang Huanga,*(), Jianjun Lia, Wang Xiaoa, Hui Zhua, Fei Fenga, Hongwei Lib, Siliang Yanc
Received:
2020-04-28
Revised:
2020-06-18
Accepted:
2020-07-03
Published:
2021-04-20
Online:
2021-04-30
Contact:
Liang Huang
About author:
* E-mail:huangliang@hust.edu.cn(L. Huang).Hongliang Su, Liang Huang, Jianjun Li, Wang Xiao, Hui Zhu, Fei Feng, Hongwei Li, Siliang Yan. Formability of AA 2219-O sheet under quasi-static, electromagnetic dynamic, and mechanical dynamic tensile loadings[J]. J. Mater. Sci. Technol., 2021, 70: 125-135.
Al | Cu | Mg | Mn | Fe | Si | Zn | Zr | Ti |
---|---|---|---|---|---|---|---|---|
Bal. | 6.5 | 0.01 | 0.36 | 0.21 | 0.05 | 0.02 | 0.18 | 0.06 |
Table 1 Chemical composition of AA 2219-O (in weight percent, %).
Al | Cu | Mg | Mn | Fe | Si | Zn | Zr | Ti |
---|---|---|---|---|---|---|---|---|
Bal. | 6.5 | 0.01 | 0.36 | 0.21 | 0.05 | 0.02 | 0.18 | 0.06 |
Al | Mg | Si | Fe | Cu | Mn | Cr | Zn |
---|---|---|---|---|---|---|---|
Bal. | 2.46 | 0.14 | 0.26 | 0.06 | 0.05 | 0.28 | 0.04 |
Table 2 Chemical composition of AA 5052-O (in weight percent, %).
Al | Mg | Si | Fe | Cu | Mn | Cr | Zn |
---|---|---|---|---|---|---|---|
Bal. | 2.46 | 0.14 | 0.26 | 0.06 | 0.05 | 0.28 | 0.04 |
Fig. 2. Illustration of the sample deformation for the QS (a), EM (b), and MD (c) tensile tests. For the EM and MD tensile tests, the simulated strain paths of Position A and B are shown in (d). (For the sake of discussion, Position A experiencing the maximum strain and Position B at the sample’s center were defined for the two dynamic tensile tests.)
Group | Deformation condition | Capacitance (μF) | Sample material | Sample thickness (mm) | Driver sheet material | Driver sheet thickness (mm) | Critical discharge voltage (kV) |
---|---|---|---|---|---|---|---|
EM-1 | Electromagnetic dynamic | 426 | AA 2219-O | 1.5 | 4.4 | ||
MD-1 | Mechanical dynamic | 426 | AA 2219-O | 1.5 | AA 5052-O | 2.0 | 7.0 |
EM-2 | Electromagnetic dynamic | 426 | AA 2219-O | 2.0 | 5.1 | ||
MD-2 | Mechanical dynamic | 426 | AA 2219-O | 2.0 | AA 5052-O | 2.0 | 7.5 |
EM-3 | Electromagnetic dynamic | 106.5 | AA 2219-O | 1.5 | 9.0 | ||
MD-3 | Mechanical dynamic | 106.5 | AA 2219-O | 1.5 | AA 5052-O | 2.0 | 15.3 |
Table 3 Various dynamic tensile tests.
Group | Deformation condition | Capacitance (μF) | Sample material | Sample thickness (mm) | Driver sheet material | Driver sheet thickness (mm) | Critical discharge voltage (kV) |
---|---|---|---|---|---|---|---|
EM-1 | Electromagnetic dynamic | 426 | AA 2219-O | 1.5 | 4.4 | ||
MD-1 | Mechanical dynamic | 426 | AA 2219-O | 1.5 | AA 5052-O | 2.0 | 7.0 |
EM-2 | Electromagnetic dynamic | 426 | AA 2219-O | 2.0 | 5.1 | ||
MD-2 | Mechanical dynamic | 426 | AA 2219-O | 2.0 | AA 5052-O | 2.0 | 7.5 |
EM-3 | Electromagnetic dynamic | 106.5 | AA 2219-O | 1.5 | 9.0 | ||
MD-3 | Mechanical dynamic | 106.5 | AA 2219-O | 1.5 | AA 5052-O | 2.0 | 15.3 |
Materials | Density (kg m-3) | Young’s modulus (GPa) | Poisson’s ratio | A (MPa) | B (MPa) | C | n |
---|---|---|---|---|---|---|---|
AA 2219-O | 2820 | 73.1 | 0.33 | 69.5 | 258.4 | 0.01616 | 0.52 |
AA 5052-O | 2750 | 71.5 | 0.30 | 100 | 182.3 | 0.01987 | 0.34 |
Table 4 Material parameters used in the simplified Johnson-Cook models for AA 2219-O[14] and AA 5052-O[50].
Materials | Density (kg m-3) | Young’s modulus (GPa) | Poisson’s ratio | A (MPa) | B (MPa) | C | n |
---|---|---|---|---|---|---|---|
AA 2219-O | 2820 | 73.1 | 0.33 | 69.5 | 258.4 | 0.01616 | 0.52 |
AA 5052-O | 2750 | 71.5 | 0.30 | 100 | 182.3 | 0.01987 | 0.34 |
Fig. 5. Photographs of the formed QS (QS-1) (a), EM (EM-1) (b), and MD (MD-1) (c) tensile samples of 1.5 mm thick. Details of the necking bands with offset marks for (a-c) are shown in (d). (Observed necking bands were marked with red dashed lines, and potential necking bands with blue dashed lines.)
Fig. 6. Forming limit diagrams of the 1.5 mm (QS-1) (a) and 2 mm (QS-2) (b) thick AA 2219-O sheet under QS tensile loading. (Colors are used to identify the various results of the repeated test samples.)
Fig. 7. Forming limit diagrams of the 1.5 mm (a, b) and 2 mm (c, d) thick AA 2219-O sheet under EM (a, c) and MD (b, d) tensile loadings. (a) EM-1, (b) MD-1, (c) EM-2, and (d) MD-2. (Colors are used to identify the various results of the repeated test samples.)
Group | QS-1 | QS-2 | EM-1 | MD-1 | EM-2 | MD-2 |
---|---|---|---|---|---|---|
Description | 1.5 mm, quasi-static | 2 mm, quasi-static | 1.5 mm, electromagnetic dynamic | 1.5 mm, mechanical dynamic | 2 mm, electromagnetic dynamic | 2 mm, mechanical dynamic |
Strain ratio, ρ | -0.296~-0.214 | -0.393~-0.233 | -0.384~-0.196 | -0.295~-0.205 | -0.448~-0.224 | -0.417~-0.217 |
Average strain ratio, ρ¯ | -0.250 | -0.309 | -0.299 | -0.259 | -0.346 | -0.317 |
Critical effective strain, ε¯c | 0.251 | 0.251 | 0.365 | 0.352 | 0.365 | 0.350 |
Table 5 Forming limit evaluation of the test groups with different thicknesses under QS, EM, and MD tensile loadings.
Group | QS-1 | QS-2 | EM-1 | MD-1 | EM-2 | MD-2 |
---|---|---|---|---|---|---|
Description | 1.5 mm, quasi-static | 2 mm, quasi-static | 1.5 mm, electromagnetic dynamic | 1.5 mm, mechanical dynamic | 2 mm, electromagnetic dynamic | 2 mm, mechanical dynamic |
Strain ratio, ρ | -0.296~-0.214 | -0.393~-0.233 | -0.384~-0.196 | -0.295~-0.205 | -0.448~-0.224 | -0.417~-0.217 |
Average strain ratio, ρ¯ | -0.250 | -0.309 | -0.299 | -0.259 | -0.346 | -0.317 |
Critical effective strain, ε¯c | 0.251 | 0.251 | 0.365 | 0.352 | 0.365 | 0.350 |
Fig. 9. Comparison of the experimental (a) and simulated (b) effective strain distribution in the 1.5 mm thick AA 2219-O sheet sample under MD tensile loading (MD-1). The strain distributions along the length of the sample were given in (c).
Fig. 10. Effect of the maximum strain rate on the forming limit of AA 2219-O sheet. The maximum strain rate was extracted from corresponding simulation results.
Fig. 12. Comparison of the force distributions under EM and MD tensile loadings (EM-1 and MD-1). (a, b) Electromagnetic force density. (c) The evolution of the electromagnetic and contact forces. (d) The evolution of the body force.
Fig. 14. Comparison of stress states of two dynamic loading modes. (a) Schematic of the body force and planar force, along with the through-thickness stress distribution of the samples, under EM (EM-1) and MD (MD-1) tensile tests. (b) The ratio of the through-thickness stress to the longitudinal stress at Position A. (c) Evolution of the stress triaxiality at typical locations on the samples.
Fig. 15. The simulated stress vs. strain curve (a) and current density history (b) of the element at Position A on the sample under EM tensile loading (EM-1).
[1] | W.Y. Luo, L. Huang, J.J. Li, X.L. Liu, Z.Q. Wang, J. Mater. Process . Technol., 214(2014), pp. 2811-2819. |
[2] | J. Xu, Y. Zhou, J. Cui, L. Huang, X. Zhang, G. Li, Int. J. Adv. Manuf. Technol., 95(2017), pp. 3319-3333.[3]J. Li, L. Li, M. Wan, H. Yu, L. Liu, Procedia Manuf., 15(2018), pp. 14-30. |
[4] |
H.W. Jiang, N. Li, Z. Xu, C. Yan, D.Z. Wang, X.T. Han, Mater. Des., 81(2015), pp. 54-58.
DOI URL |
[5] |
J.S. Li, R.N. Raoelison, T. Sapanathan, Y.L. Hou, M. Rachik, Acta Mater., 195(2020), pp. 404-415.
DOI URL |
[6] | J. Cui, G. Sun, G. Li, Z. Xu, P.K. Chu, Appl. Phys. Lett ., 105(2014), Article 221901. |
[7] | R. Guan, Y. Shen, Z. Zhao, X. Wang, J. Mater. Sci. Technol., 33(2017), pp. 215-223. |
[8] | J.P. Hou, R. Li, Q. Wang, H.Y. Yu, Z.J. Zhang, Q.Y. Chen, H. Ma, X.M. Wu, X.W. Li, Z.F. Zhang, J. Mater. Sci. Technol., 35(2019), pp. 742-751. |
[9] | J. Cui, Y. Li, Q. Liu, X. Zhang, Z. Xu, G. Li, J. Mater. Process . Technol., 264(2019), pp. 273-282. |
[10] |
F. Feng, S. Huang, Z. Meng, J. Hu, Y. Lei, M. Zhou, Z. Yang, Mater. Sci. Eng. A, 594(2014), pp. 334-343.
DOI URL |
[11] | J. Xu, X. Xie, Z. Wen, J. Cui, X. Zhang, D. Zhu, Y. Liu, J. Manuf. Process ., 37(2019), pp. 402-412. |
[12] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol., 44(2020), pp. 171-190.
DOI URL |
[13] | E. Thibaudeau, B.L. Kinsey, J. Mater. Process . Technol., 215(2015), pp. 251-263. |
[14] |
H. Su, L. Huang, J. Li, F. Ma, P. Huang, F. Feng, Int. J. Mach. Tools Manuf., 124(2018), pp. 99-116.
DOI URL |
[15] | H. Gong, L. Huang, J. Li, Y. Dai, Q. Cao, X. Han, L. Li, Mater. China, 35(2016), pp. 284-291. |
(in Chinese.) | |
[16] | S.F. Golovashchenko, AIP Conf. Proc., 778(2005), pp. 284-285. |
[17] | E. Iriondo, B. Gonzalez, M. Gutierrez, V. Vohnout, G. Daehn, B. Hayes, Proc. Second. Int. Conf.High Speed Form., Dortmund(2006), pp. 153-160. |
[18] |
J. Li, W. Qiu, L. Huang, H. Su, H. Tao, P. Li, Int. J. Mach. Tools Manuf., 135(2018), pp. 65-77.
DOI URL |
[19] | V. Psyk, D. Risch, B.L. Kinsey, A.E. Tekkaya, M. Kleiner, J. Mater. Process . Technol., 211(2011), pp. 787-829. |
[20] | J. Cui, H. Liao, L. Duan, H. Jiang, G. Li, Thin-Walled Struct ., 153(2020), Article 106789. |
[21] |
V.S. Balanethiram, X. Hu, M. Altynova, G.S. Daehn, J. Mater. Process . Technol., 45(1994), pp. 595-600.
DOI URL |
[22] |
J.D. Thomas, M. Seth, G.S. Daehn, J.R. Bradley, N. Triantafyllidis, Acta Mater., 55(2007), pp. 2863-2873.
DOI URL |
[23] |
C. Li, D. Liu, H. Yu, Z. Ji, Int. J. Mach. Tools Manuf., 49(2009), pp. 117-124.
DOI URL |
[24] | J.M. Imbert, S.L. Winkler, M.J. Worswick, D.A. Oliveira, S. Golovashchenko, J. Eng. Mater . Technol., 127(2005), p. 145. |
[25] | S.F. Golovashchenko, J. Mater. Eng . Perform., 16(2007), pp. 314-320. |
[26] | D.A. Oliveira, M.J. Worswick, M. Finn, D. Newman, J. Mater. Process . Technol., 170(2005), pp. 350-362. |
[27] | G. Li, H. Deng, Y. Mao, X. Zhang, J. Cui, J. Mater. Process . Technol., 255(2018), pp. 373-386. |
[28] |
J.R. Xu, Q.Q. Lin, J.J. Cui, C.F. Li, Int. J. Adv. Manuf. Technol., 72(2014), pp. 665-676.
DOI URL |
[29] |
X. Hu, R.H. Wagoner, G.S. Daehn, S. Ghosh, Metall. Mater. Trans. A, 25(1994), pp. 2723-2735.
DOI URL |
[30] |
V. Balanethiram, G.S. Daehn, Scripta Metal. Mater., 27(1992), pp. 1783-1788.
DOI URL |
[31] | M.A. Meyers, John Wiley & Sons 1994. |
[32] | J. Imbert, S. Winkler, M. Worswick, S. Golovashchenko, Proc. First. Int. Conf.High Speed Form., Dortmund(2004), pp. 201-210. |
[33] |
H. Zhu, L. Huang, J. Li, X. Li, H. Ma, C. Wang, F. Ma, Mater. Sci. Eng. A, 714(2018), pp. 124-139.
DOI URL |
[34] |
N. Li, H.P. Yu, Z. Xu, Z.S. Fan, L. Liu, Mater. Sci. Eng. A, 673(2016), pp. 222-232.
DOI URL |
[35] | W.H. Gourdin, J. Appl. Phys ., 65(1989), pp. 411-422. |
[36] |
G. Wang, Y. Zhao, Y. Hao, J. Mater. Sci. Technol., 34(2018), pp. 73-91.
DOI URL |
[37] | H. He, Y. Yi, S. Huang, Y. Zhang, J. Mater. Sci. Technol., 35(2019), pp. 55-63. |
[38] |
Y. Zhou, X. Lin, N. Kang, W. Huang, J. Wang, Z. Wang, J. Mater. Sci. Technol., 37(2020), pp. 143-153.
DOI URL |
[39] |
R. Zhang, J. Li, Q. Li, Y. Qi, Z. Zeng, Y. Qiu, X. Chen, S.K. Kairy, S. Thomas, N. Birbilis, Corros. Sci., 150(2019), pp. 268-278.
DOI URL |
[40] | Standard E8/E8M, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken 2013. |
[41] |
H. Zhu, L. Huang, Z. Wang, J. Li, H. Ma, H. Su, J. Mater. Sci., 54(2019), pp. 9857-9874.
DOI URL |
[42] | C. Maris, A. Hassannejadasl, D.E. Green, J. Cheng, S.F. Golovashchenko, A.J. Gillard, Y. Liang, J. Mater. Process . Technol., 235(2016), pp. 206-219. |
[43] |
Q. Hu, L. Zhang, Q. Ouyang, X. Li, X. Zhu, J. Chen, Int. J. Plast., 103(2018), pp. 143-167.
DOI URL |
[44] | A. Jenab, D.E. Green, A.T. Alpas, S.F. Golovashchenko, J. Mater. Process . Technol., 255(2018), pp. 914-926. |
[45] | H.-w. Li, S.-l. Yan, M. Zhan, X. Zhang, J. Mater. Process. Technol., 263(2019), pp. 423-439. |
[46] | MatWeb, https://www.matweb.com, 2020. |
( Accessed 3 March 2020). | |
[47] | LSTC, LS-DYNA R8.0 keyword user’s manual, 2015. |
[48] |
S. Yan, H. Yang, H. Li, X. Yao, Int. J. Plast., 85(2016), pp. 203-229.
DOI URL |
[49] | J. Fang, J. Mo, X. Cui, J. Li, B. Zhou, J. Mater. Process . Technol., 238(2016), pp. 395-408. |
[50] |
Y. Tian, L. Huang, H.J. Ma, J.J. Li, Mater. Des., 54(2014), pp. 587-597.
DOI URL |
[51] |
P.J. Noell, J.D. Carroll, B.L. Boyce, Acta Mater., 161(2018), pp. 83-98.
DOI URL |
[52] |
Y. Zhong, L. Liu, J. Zou, X. Li, D. Cui, Z. Shen, J. Mater. Sci. Technol., 42(2020), pp. 97-105.
DOI URL |
[53] | Q. Zheng, H. Yu, J. Mater. Process. Technol ., 279(2020), Article 116582. |
[54] | F.C. Liu, Z.Y. Ma, F.C. Zhang, J. Mater. Sci. Technol., 28(2012), pp. 1025-1030. |
[55] | J.-T. Gau, P.-H. Chen, H. Gu, R.-S. Lee, J. Mater. Process. Technol., 213(2013), pp. 376-382. |
[56] |
H. Ma, L. Huang, M. Wu, J. Li, Procedia Eng., 81(2014), pp. 787-792.
DOI URL |
[57] |
T. Rahmaan, A. Bardelcik, J. Imbert, C. Butcher, M.J. Worswick, Int. J. Impact Eng., 88(2016), pp. 72-90.
DOI URL |
[58] | T.C. Cheng, R.S. Lee, J. Mater. Process . Technol., 253(2018), pp. 134-159. |
[59] |
H. Yu, Q. Zheng, Int. J. Adv. Manuf. Technol., 104(2019), pp. 743-756.
DOI URL |
[60] |
F.Q. Li, J.H. Mo, J.J. Li, L. Huang, H.Y. Zhou, Mater. Des., 52(2013), pp. 337-344.
DOI URL |
[61] | Q. Zhang, L. Huang, J. Li, F. Feng, H. Su, F. Ma, K. Zhong, J. Mater. Process . Technol., 265(2019), pp. 20-33. |
[62] |
H. Altenbach, O. Morachkovsky, K. Naumenko, D. Lavinsky, Continuum Mech. Thermodyn., 28(2015), pp. 1421-1433.
DOI URL |
[1] | Jingbin Zhang, Yinrui Sun, Zhijie Ji, Haiwen Luo, Feng Liu. Improved mechanical properties of V-microalloyed dual phase steel by enhancing martensite deformability [J]. J. Mater. Sci. Technol., 2021, 75(0): 139-153. |
[2] | Jo Min Chul, Jisung Yoo, Jo Min Cheol, Alireza Zargaran, Sohn Seok Su, Kim Nack J., Sunghak Lee. Effects of Cu addition on formability and surface delamination phenomenon in high-strength high-Mn steels [J]. J. Mater. Sci. Technol., 2020, 43(0): 44-51. |
[3] | Bo Song, Qingshan Yang, Tao Zhou, Linjiang Chai, Ning Guo, Tingting Liu, Shengfeng Guo, Renlong Xin. Texture control by {10-12} twinning to improve the formability of Mg alloys: A review [J]. J. Mater. Sci. Technol., 2019, 35(10): 2269-2282. |
[4] | D.M. Sekban, S.M. Akterer, O. Saray, Z.Y. Ma, G. Purcek. Formability of friction stir processed low carbon steels used in shipbuilding [J]. J. Mater. Sci. Technol., 2018, 34(1): 237-244. |
[5] | Di Hongshuang, Sun Qian, Wang Xiaonan, Li Jianping. Microstructure and properties in dissimilar/similar weld joints between DP780 and DP980 steels processed by fiber laser welding [J]. J. Mater. Sci. Technol., 2017, 33(12): 1561-1571. |
[6] | Jingren Dong, Dingfei Zhang, Jing Sun, Qingwei Dai, Fusheng Pan. Effects of Different Stretching Routes on Microstructure and Mechanical Properties of AZ31B Magnesium Alloy Sheets [J]. J. Mater. Sci. Technol., 2015, 31(9): 935-940. |
[7] | Wu Y., Wang H., Liu X.J., Chen X.H., Hui X.D., Zhang Y., Lu Z.P.. Designing Bulk Metallic Glass Composites with Enhanced Formability and Plasticity [J]. J. Mater. Sci. Technol., 2014, 30(6): 566-575. |
[8] | Guangsheng Huang,Wei Xu,Guangjie Huang,Hongcheng Li,Bo Song. Textural Evolution of AZ31B Magnesium Alloy Sheets Undergoing Repeated Unidirectional Bending at Room Temperature [J]. J Mater Sci Technol, 2009, 25(03): 365-369. |
[9] | M. Cheng,S.H. Zhang. Investigation of Micro Formability of Bulk Amorphous Alloy in the Supercooled Liquid State Based on Fluid Flow and Finite Element Analysis [J]. J Mater Sci Technol, 2009, 25(02): 277-280. |
[10] | Zhiqing XIONG, Xuemei YANG. Quantitative Evaluation for Drawability of Sheet Metal [J]. J Mater Sci Technol, 2005, 21(05): 763-766. |
[11] | Changli WANG, Kaifeng ZHANG. Superplastic Microforming of Zn-A122 Alloy Ribs [J]. J Mater Sci Technol, 2004, 20(02): 236-238. |
[12] | Peng LUO, Xiaolin WU, Kenong XIA. Equal Channel Angular Deformation (ECAD) of As-Cast AM60 Magnesium Alloy [J]. J Mater Sci Technol, 2003, 19(06): 513-515. |
[13] | Guancheng LI, Yonglin KANG. FEM Simulation of Bending Formability for Laminate Steel/Resin/Steel Lightweight Composite Sheet [J]. J Mater Sci Technol, 2003, 19(04): 324-326. |
[14] | Yung-Hung Chen, Shyong Lee, Jian-Yih Wang. Isothermal Gas Forming of Mg Alloy AZ31 Sheet [J]. J Mater Sci Technol, 2002, 18(03): 227-230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||