J. Mater. Sci. Technol. ›› 2021, Vol. 70: 136-144.DOI: 10.1016/j.jmst.2020.07.026
• Research Article • Previous Articles Next Articles
Fangqiang Ning, Xiang Wanga, Ying Yangc,*(), Jibo Tana, Ziyu Zhanga, Dan Jiaa, Xinqiang Wua, En-Hou Hana
Received:
2020-05-01
Accepted:
2020-07-24
Published:
2021-04-20
Online:
2021-04-15
Contact:
Ying Yang
About author:
*E-mail: jbtan10s@imr.ac.cn (J. Tan).Fangqiang Ning, Xiang Wang, Ying Yang, Jibo Tan, Ziyu Zhang, Dan Jia, Xinqiang Wu, En-Hou Han. Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water[J]. J. Mater. Sci. Technol., 2021, 70: 136-144.
Alloy | Fe | Cr | Al | Mo | Y | S | P | O | N | H |
---|---|---|---|---|---|---|---|---|---|---|
FeCrAl-1 | Bal. | 12.89 | 5.04 | 4.10 | <0.005 | 0.003 | 0.005 | 0.0011 | 0.0030 | <0.00006 |
FeCrAl-2 | Bal. | 12.99 | 5.03 | 4.02 | 0.015 | 0.002 | 0.004 | 0.0011 | 0.0030 | <0.00006 |
Table 1 : Compositions of FeCrAl alloys used in the present work (wt. %).
Alloy | Fe | Cr | Al | Mo | Y | S | P | O | N | H |
---|---|---|---|---|---|---|---|---|---|---|
FeCrAl-1 | Bal. | 12.89 | 5.04 | 4.10 | <0.005 | 0.003 | 0.005 | 0.0011 | 0.0030 | <0.00006 |
FeCrAl-2 | Bal. | 12.99 | 5.03 | 4.02 | 0.015 | 0.002 | 0.004 | 0.0011 | 0.0030 | <0.00006 |
Parameter | Parameter range |
---|---|
H3BO3 | 1200 ppm (by weight) |
LiOH | 2.3 ppm (by weight) |
Flow rate | 0.3 L/h |
Pressure | 19 MPa |
Temperature | 360 ± 2 °C |
Dissolved oxygen | < 5 ppb (by weight) |
Table 2 Testing conditions in the present work.
Parameter | Parameter range |
---|---|
H3BO3 | 1200 ppm (by weight) |
LiOH | 2.3 ppm (by weight) |
Flow rate | 0.3 L/h |
Pressure | 19 MPa |
Temperature | 360 ± 2 °C |
Dissolved oxygen | < 5 ppb (by weight) |
Fig. 4. Surface morphologies of oxide films on the three alloys after 100 days exposure test: (a, b) Zircaloy-4, (c, d) FeCrAl-1 alloy, (e, f) FeCrAl-2 alloy.
Fig. 7. SEM observation and analysis of the oxide film formed on Zircaloy-4: (a) SEM cross-sectional morphology of the oxide film, (b) mapping for O, (c) mapping for Zr.
Fig. 8. TEM observation and analysis of the oxide film formed on FeCrAl-1 alloy: (a) TEM cross-sectional morphology of the oxide film, (b) mappings for O, Fe, Cr, Al and Mo, (c) magnified image of rectangular in Fig. 8(a), (d) EDS line analysis collected along line shown in Fig. 8(a), (e) selected area electron diffraction of the oxide film.
Fig. 9. TEM observation and analysis of the oxide film formed on FeCrAl-2 alloy: (a) TEM cross-sectional morphology of the oxide film, (b) mappings for O, Fe, Cr, Al and Mo, (c) magnified image of rectangular in Fig. 9(a), (d) EDS line analysis collected along line shown in Fig. 9(a), (e) selected area electron diffraction of the oxide film.
[1] |
W. Xiao, H. Deng, S. Zou, Y. Ren, D. Tang, M. Lei, C. Xiao, X. Zhou, Y. Chen, J. Nucl. Mater., 509(2018), pp. 542-549.
DOI URL |
[2] |
B.A. Pint, K.A. Terrani, M.P. Brady, T. Cheng, J.R. Keiser, J. Nucl. Mater., 440(2013), pp. 420-427.
DOI URL |
[3] |
D. Pan, R. Zhang, H. Wang, C. Lu, Y. Liu, J. Alloy. Compd., 684(2016), pp. 549-555.
DOI URL |
[4] |
D.J. Park, H.G. Kim, J.Y. Park, Y.I. Jung, J.H. Park, Y.H. Koo, Corros. Sci., 94(2015), pp. 459-465.
DOI URL |
[5] |
T. Cheng, J.R. Keiser, M.P. Brady, K.A. Terrani, B.A. Pint, J. Nucl. Mater., 427(2012), pp. 396-400.
DOI URL |
[6] |
S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, L.L. Snead, J. Nucl. Mater., 448(2014), pp. 374-379.
DOI URL |
[7] |
R.B. Rebak, EPJ Nuclear Sci. Technol., 3(2017), p. 34.
DOI URL |
[8] |
R.B. Rebak, JOM, 70(2018), pp. 176-185.
DOI URL |
[9] | R. Qiang, A. Leong, J. Zhang, M.P. Short, J. Nucl. Mater., 526(2019), Article 151735. |
[10] |
K.A. Terrani, B.A. Pint, Y.J. Kim, K.A. Unocic, Y. Yang, C.M. Silva, H.M. Meyer, R.B. Rebak, J. Nucl. Mater., 479(2016), pp. 36-47.
DOI URL |
[11] |
J. Jedliński, J.-L. Grosseau-Poussard, K. Kowalski, J. Dabek, G. Borchardt, Oxid. Met., 79(2013), pp. 41-51.
DOI URL |
[12] |
N. Li, S.S. Parker, T.A. Saleh, S.A. Maloy, A.T. Nelson, Corros. Sci., 157(2019), pp. 274-283.
DOI URL |
[13] |
Y.-P. Xu, S.-X. Zhao, F. Liu, X.-C. Li, M.-Z. Zhao, J. Wang, T. Lu, S.-H. Hong, H.-S. Zhou, G.-N. Luo, J. Nucl. Mater., 477(2016), pp. 257-262.
DOI URL |
[14] |
R.B. Rebak, M. Larsen, Y.-J. Kim, Corros. Rev., 35(2017), pp. 177-188.
DOI URL |
[15] |
F. Ning, X. Wu, J. Tan, J. Nucl. Mater., 515(2019), pp. 326-337.
DOI URL |
[16] |
F. Ning, J. Tan, X. Wu, J. Mater. Sci. Technol., 47(2020), pp. 76-87.
DOI URL |
[17] |
P. Deng, Q. Peng, E.-H. Han, W.Ke, C. Sun, Z. Jiao, Corros. Sci., 127(2017), pp. 91-100.
DOI URL |
[18] |
W. Kuang, E.-H. Han, X. Wu, J. Rao, Corros. Sci., 52(2010), pp. 3654-3660.
DOI URL |
[19] |
B.A. Pint, J. Am. Ceram. Soc., 86(2003), pp. 686-695.
DOI URL |
[20] |
J.K. Tien, F.S. Pettit, Metall. Trans., 3(1972), pp. 1587-1599.
DOI URL |
[21] |
J. Jedlinski, J.L.G. Poussard, J. Dabek, K. Kowalski, M. Nocun, G. Smola, Z. Żurek, Oxid. Met., 88(2017), pp. 371-382.
DOI URL |
[22] |
X. Zhong, E.-H. Han, X. Wu, Corros. Sci., 66(2013), pp. 369-379.
DOI URL |
[23] | X. Zhong, X. Wu, E.-H. Han, J. Mater. Sci. Technol., 34(2018), pp. 561-569. |
[24] |
C. Ma, Q. Peng, J. Mei, E.-H. Han, W. Ke, J. Mater. Sci. Technol., 34(2018), pp. 1823-1834.
DOI URL |
[25] |
D. Chen, E.-H. Han, X. Wu, Corros. Sci., 111(2016), pp. 518-530.
DOI URL |
[26] |
Z. Ma, D. Xu, S. Guo, Y. Wang, S. Wang, Z. Jing, Y. Guo, Oxid. Met., 90(2018), pp. 599-616.
DOI URL |
[27] |
T.J. Mesquita, E. Chauveau, M. Mantel, R.P. Nogueira, Appl. Surf. Sci., 270(2013), pp. 90-97.
DOI URL |
[28] |
E. Gardin, S. Zanna, A. Seyeux, A. Allion-Maurer, P. Marcus, Corros. Sci., 155(2019), pp. 121-133.
DOI URL |
[29] |
A.J. Davenport, A.J. Dent, M. Monir, J.A. Hammons, S.M. Ghahari, P.D. Quinn, T. Rayment, J. Electrochem. Soc., 158(2011), pp. C111-C117.
DOI URL |
[30] |
H. Sun, X. Wu, E.-H. Han, Corros. Sci., 51(2009), pp. 2565-2572.
DOI URL |
[31] |
J. Zhang, Y. Hu, L. Tu, F. Sun, M. Yao, B. Zhou, Corros. Sci., 102(2016), pp. 161-167.
DOI URL |
[32] |
J. Zhang, Y. Hu, J. Huang, L. Tu, M. Yao, B. Zhou, Corros. Sci., 111(2016), pp. 132-138.
DOI URL |
[33] | J. Yang, S. Wang, X. Tang, Y. Wang, Y. Li, J. Supercrit . Fluids, 131(2018), pp. 1-10. |
[34] |
D. Chen, X. Wu, E.-H. Han, H. Sun, Corrosion, 71(2015), pp. 1213-1223.
DOI URL |
[35] |
W. Kuang, X. Wu, E.-H. Han, J. Rao, Corros. Sci., 53(2011), pp. 3853-3860.
DOI URL |
[36] |
J. Hou, Q.J. Peng, K. Sakaguchi, Y. Takeda, J. Kuniya, T. Shoji, Corros. Sci., 52(2010), pp. 1098-1101.
DOI URL |
[37] |
Q. Peng, J. Hou, K. Sakaguchi, Y. Takeda, T. Shoji, Electrochim. Acta, 56(2011), pp. 8375-8386.
DOI URL |
[38] |
R.J. Lemire, G.A. McRae, J. Nucl. Mater., 294(2001), pp. 141-147.
DOI URL |
[39] |
J. Wang, X. Li, F. Huang, Z. Zhang, J. Wang, R.W. Staehle, Corrosion, 70(2014), pp. 598-614.
DOI URL |
[40] |
W.J. Quadakkers, H. Holzbrecher, K.G. Briefs, H. Beske, Oxid. Met., 32(1989), pp. 67-88.
DOI URL |
[41] | D.P. Whittle, J. Stringer, Phil. Trans. R. Soc. Lond. A, 295(1980), pp. 309-329. |
[42] |
W. Kuang, X. Wu, E.-H. Han, Corros. Sci., 52(2010), pp. 4081-4087.
DOI URL |
[43] |
W. Kuang, X. Wu, E.-H. Han, Corros. Sci., 63(2012), pp. 259-266.
DOI URL |
[44] |
J. Chen, Q. Xia, Z. Lu, X. Ru, H. Peng, Q. Xiong, H. Li, J. Nucl. Mater., 489(2017), pp. 137-149.
DOI URL |
[45] |
L. Dong, Q. Peng, Z. Zhang, T. Shoji, E.-H. Han, W. Ke, L. Wang, Nucl. Eng. Des., 295(2015), pp. 403-414.
DOI URL |
[46] |
J. Robertson, Corros. Sci., 32(1991), pp. 443-465.
DOI URL |
[47] |
D. Lister, R. Davidson, E. McAlpine, Corros. Sci., 27(1987), pp. 113-140.
DOI URL |
[48] |
Y.-J. Kim, Corrosion, 51(1995), pp. 849-860.
DOI URL |
[1] | Xinyue Tang, Junchao Wang, Jing Li, Xinglai Zhang, Peiqing La, Xin Jiang, Baodan Liu. In-situ growth of large-area monolithic Fe2O3/TiO2 catalysts on flexible Ti mesh for CO oxidation [J]. J. Mater. Sci. Technol., 2021, 69(0): 119-128. |
[2] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[3] | Zihong Wang, Xin Lin, Yao Tang, Nan Kang, Xuehao Gao, Shuoqing Shi, Weidong Huang. Laser-based directed energy deposition of novel Sc/Zr-modified Al-Mg alloys: columnar-to-equiaxed transition and aging hardening behavior [J]. J. Mater. Sci. Technol., 2021, 69(0): 168-179. |
[4] | Yeshun Huang, Xinguang Wang, Chuanyong Cui, Zihao Tan, Jinguo Li, Yanhong Yang, Jinlai Liu, Yizhou Zhou, Xiaofeng Sun. Effect of thermal exposure on the microstructure and creep properties of a fourth-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 180-187. |
[5] | Yuan Yu, Nannan Xu, Shengyu Zhu, Zhuhui Qiao, Jianbin Zhang, Jun Yang, Weimin Liu. A novel Cu-doped high entropy alloy with excellent comprehensive performances for marine application [J]. J. Mater. Sci. Technol., 2021, 69(0): 48-59. |
[6] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[7] | Yongxin Ruan, Changrong Li, Yuping Ren, Xiaopan Wu, R. Schmid-Fetzer, Cuiping Guo, Zhenmin Du. Phases equilibrated with long-period stacking ordered phases in the Mg-rich corner of the Mg-Y-Zn system [J]. J. Mater. Sci. Technol., 2021, 68(0): 147-159. |
[8] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
[9] | Yaxin Xu, Wenya Li, Longzhen Qu, Xiawei Yang, Bo Song, Rocco Lupoi, Shuo Yin. Solid-state cold spraying of FeCoCrNiMn high-entropy alloy: an insight into microstructure evolution and oxidation behavior at 700-900 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 172-183. |
[10] | Hongyan Wang, Ran Wei, Xiumin Li, Xuli Ma, Xiaogang Hao, Guoqing Guan. Nanostructured amorphous Fe29Co27Ni23Si9B12 high-entropy-alloy: an efficient electrocatalyst for oxygen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 68(0): 191-198. |
[11] | Shenbao Jin, Zhenjiao Luo, Xianghai An, Xiaozhou Liao, Jiehua Li, Gang Sha. Composition-dependent dynamic precipitation and grain refinement in Al-Si system under high-pressure torsion [J]. J. Mater. Sci. Technol., 2021, 68(0): 199-208. |
[12] | Qiuzhi Gao, Ziyun Liu, Huijun Li, Hailian Zhang, Chenchen Jiang, Aimin Hao, Fu Qu, Xiaoping Lin. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling [J]. J. Mater. Sci. Technol., 2021, 68(0): 91-102. |
[13] | Patryk Jedrasiak, Hugh Shercliff. Finite element analysis of small-scale hot compression testing [J]. J. Mater. Sci. Technol., 2021, 76(0): 174-188. |
[14] | Huabei Peng, Dian Wang, Qi Liao, Yuhua Wen. Degeneration and rejuvenation of shape memory effect associated with the precipitation of coherent nano-particles in a Co-Ni-Si shape memory alloy [J]. J. Mater. Sci. Technol., 2021, 76(0): 150-155. |
[15] | Xuefeng Liao, Jiasheng Zhang, Jiayi He, Wenbing Fan, Hongya Yu, Xichun Zhong, Zhongwu Liu. Development of cost-effective nanocrystalline multi-component (Ce,La,Y)-Fe-B permanent magnetic alloys containing no critical rare earth elements of Dy, Tb, Pr and Nd [J]. J. Mater. Sci. Technol., 2021, 76(0): 215-221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||