J. Mater. Sci. Technol. ›› 2021, Vol. 68: 147-159.DOI: 10.1016/j.jmst.2020.08.019
• Research Article • Previous Articles Next Articles
Yongxin Ruana, Changrong Lia,*(), Yuping Renb, Xiaopan Wua, R. Schmid-Fetzerc, Cuiping Guoa, Zhenmin Dua
Received:
2020-05-15
Revised:
2020-06-30
Accepted:
2020-07-03
Published:
2021-03-30
Online:
2021-05-01
Contact:
Changrong Li
About author:
*E-mail address:crli@mater.ustb.edu.cn(C. Li).Yongxin Ruan, Changrong Li, Yuping Ren, Xiaopan Wu, R. Schmid-Fetzer, Cuiping Guo, Zhenmin Du. Phases equilibrated with long-period stacking ordered phases in the Mg-rich corner of the Mg-Y-Zn system[J]. J. Mater. Sci. Technol., 2021, 68: 147-159.
Fig. 1. The nominal and measured compositions of the designed typical alloys marked in the Mg-rich corner. The composition points were designed guided by the straight line with the molar ratio of Y/Zn = 4/3.
Fig. 2. XRD patterns of the alloys equilibrated at 500°C in comparison with the data from Powder Diffraction File released in 2002. Meanwhile, the high magnification of characteristic peaks of the (14H/18R) and 10H are attached in each subgraph: (a) Mg88Y8Zn4(#1); (b) Mg86Y8Zn6(#2); (c) Mg95Y3Zn2(#3); (d) Mg95Y2Zn3(#4); (e) Mg80Y15Zn5(#5); (f) Mg74Y14Zn12(#6).
Sample number | Alloy compositions determined by EDS (± 0.02 at.%) | Constituent phases determined by SEM / XRD | Constituent phases determined by TEM / SAED | Phase compositions determined by EDS (± 0.02 at.%) | ||||
---|---|---|---|---|---|---|---|---|
Mg | Y | Zn | Mg | Y | Zn | |||
#1 | 89.01 | 7.73 | 3.26 | Mg24Y5 | Mg24Y5 | 82.60 | 14.12 | 3.28 |
α-Mg | α-Mg | 96.08 | 3.46 | 0.46 | ||||
14H/18R | 18R | 86.60 | 7.81 | 5.59 | ||||
#2 | 86.25 | 7.96 | 5.79 | α-Mg | α-Mg | 98.46 | 0.79 | 0.75 |
14H/18R | 14H | 87.38 | 6.85 | 5.77 | ||||
18R | 84.55 | 8.73 | 6.72 | |||||
#3 | 95.26 | 2.55 | 2.16 | α-Mg | α-Mg | 98.72 | 0.86 | 0.42 |
14H/18R | 14H | 87.30 | 7.60 | 5.10 | ||||
18R | 85.68 | 8.31 | 6.01 | |||||
#4 | 94.62 | 2.17 | 3.21 | α-Mg | α-Mg | 98.64 | 0.59 | 0.77 |
14H/18R | 14H | 88.02 | 6.31 | 5.67 | ||||
W | W | 38.87 | 22.92 | 38.21 | ||||
#5 | 80.60 | 13.36 | 5.04 | Mg24Y5 | Mg24Y5 | 83.40 | 13.96 | 2.64 |
14H/18R | 18R | 79.50 | 12.23 | 8.27 | ||||
10H | 10H | 77.04 | 13.44 | 9.52 | ||||
#6 | 77.31 | 12.65 | 10.04 | W | W | 33.23 | 25.82 | 40.95 |
14H/18R | 18R | 79.63 | 11.85 | 8.52 | ||||
10H | 10H | 77.67 | 12.79 | 9.54 |
Table 1 The determined compositions of the Mg-Y-Zn alloys annealed at 500°C as well as the constituent phases and phase compositions (the compositions of the alloys and the corresponding constituent phases were determined by EDS, the phase identifications were performed by SEM / XRD and TEM / SAED).
Sample number | Alloy compositions determined by EDS (± 0.02 at.%) | Constituent phases determined by SEM / XRD | Constituent phases determined by TEM / SAED | Phase compositions determined by EDS (± 0.02 at.%) | ||||
---|---|---|---|---|---|---|---|---|
Mg | Y | Zn | Mg | Y | Zn | |||
#1 | 89.01 | 7.73 | 3.26 | Mg24Y5 | Mg24Y5 | 82.60 | 14.12 | 3.28 |
α-Mg | α-Mg | 96.08 | 3.46 | 0.46 | ||||
14H/18R | 18R | 86.60 | 7.81 | 5.59 | ||||
#2 | 86.25 | 7.96 | 5.79 | α-Mg | α-Mg | 98.46 | 0.79 | 0.75 |
14H/18R | 14H | 87.38 | 6.85 | 5.77 | ||||
18R | 84.55 | 8.73 | 6.72 | |||||
#3 | 95.26 | 2.55 | 2.16 | α-Mg | α-Mg | 98.72 | 0.86 | 0.42 |
14H/18R | 14H | 87.30 | 7.60 | 5.10 | ||||
18R | 85.68 | 8.31 | 6.01 | |||||
#4 | 94.62 | 2.17 | 3.21 | α-Mg | α-Mg | 98.64 | 0.59 | 0.77 |
14H/18R | 14H | 88.02 | 6.31 | 5.67 | ||||
W | W | 38.87 | 22.92 | 38.21 | ||||
#5 | 80.60 | 13.36 | 5.04 | Mg24Y5 | Mg24Y5 | 83.40 | 13.96 | 2.64 |
14H/18R | 18R | 79.50 | 12.23 | 8.27 | ||||
10H | 10H | 77.04 | 13.44 | 9.52 | ||||
#6 | 77.31 | 12.65 | 10.04 | W | W | 33.23 | 25.82 | 40.95 |
14H/18R | 18R | 79.63 | 11.85 | 8.52 | ||||
10H | 10H | 77.67 | 12.79 | 9.54 |
Sample number | Alloy compositions determined by EDS (± 0.02 at.%) | Constituent phases determined by SEM / XRD | Constituent phases determined by TEM / SAED | Phase compositions determined by EDS (± 0.02 at.%) | ||||
---|---|---|---|---|---|---|---|---|
Mg | Y | Zn | Mg | Y | Zn | |||
#1 | 88.74 | 7.18 | 4.08 | Mg24Y5 | Mg24Y5 | 85.60 | 12.94 | 1.46 |
α-Mg | α-Mg | 97.14 | 2.25 | 0.61 | ||||
14H/18R | 18R | 87.36 | 7.51 | 5.13 | ||||
#2 | 86.24 | 7.73 | 6.03 | α-Mg | α-Mg | 98.79 | 0.48 | 0.73 |
14H/18R | 14H | 88.55 | 6.86 | 4.59 | ||||
18R | 86.80 | 7.44 | 5.75 | |||||
#3 | 95.05 | 2.78 | 2.17 | α-Mg | α-Mg | 98.83 | 0.32 | 0.85 |
14H/18R | 14H | 91.49 | 4.96 | 4.95 | ||||
18R | 89.48 | 6.24 | 4.28 | |||||
#4 | 96.43 | 2.04 | 3.33 | α-Mg | α-Mg | 97.82 | 0.83 | 1.35 |
14H/18R | 14H | 88.81 | 6.07 | 5.13 | ||||
W | W | 32.23 | 25.16 | 42.61 | ||||
#5 | 81.47 | 13.86 | 4.67 | Mg24Y5 | Mg24Y5 | 85.28 | 13.78 | 0.94 |
14H/18R | 18R | 80.67 | 11.40 | 7.93 | ||||
10H | 10H | 78.55 | 12.90 | 8.54 | ||||
#6 | 76.20 | 13.77 | 10.03 | W | W | 35.79 | 25.45 | 38.76 |
14H/18R | 18R | 81.40 | 10.66 | 7.94 | ||||
10H | 10H | 80.14 | 11.47 | 8.39 |
Table 2 The determined compositions of the Mg-Y-Zn alloys annealed at 400°C as well as the constituent phases and phase compositions (the compositions of the alloys and the corresponding constituent phases were determined by EDS, the phase identifications were performed by SEM / XRD and TEM / SAED).
Sample number | Alloy compositions determined by EDS (± 0.02 at.%) | Constituent phases determined by SEM / XRD | Constituent phases determined by TEM / SAED | Phase compositions determined by EDS (± 0.02 at.%) | ||||
---|---|---|---|---|---|---|---|---|
Mg | Y | Zn | Mg | Y | Zn | |||
#1 | 88.74 | 7.18 | 4.08 | Mg24Y5 | Mg24Y5 | 85.60 | 12.94 | 1.46 |
α-Mg | α-Mg | 97.14 | 2.25 | 0.61 | ||||
14H/18R | 18R | 87.36 | 7.51 | 5.13 | ||||
#2 | 86.24 | 7.73 | 6.03 | α-Mg | α-Mg | 98.79 | 0.48 | 0.73 |
14H/18R | 14H | 88.55 | 6.86 | 4.59 | ||||
18R | 86.80 | 7.44 | 5.75 | |||||
#3 | 95.05 | 2.78 | 2.17 | α-Mg | α-Mg | 98.83 | 0.32 | 0.85 |
14H/18R | 14H | 91.49 | 4.96 | 4.95 | ||||
18R | 89.48 | 6.24 | 4.28 | |||||
#4 | 96.43 | 2.04 | 3.33 | α-Mg | α-Mg | 97.82 | 0.83 | 1.35 |
14H/18R | 14H | 88.81 | 6.07 | 5.13 | ||||
W | W | 32.23 | 25.16 | 42.61 | ||||
#5 | 81.47 | 13.86 | 4.67 | Mg24Y5 | Mg24Y5 | 85.28 | 13.78 | 0.94 |
14H/18R | 18R | 80.67 | 11.40 | 7.93 | ||||
10H | 10H | 78.55 | 12.90 | 8.54 | ||||
#6 | 76.20 | 13.77 | 10.03 | W | W | 35.79 | 25.45 | 38.76 |
14H/18R | 18R | 81.40 | 10.66 | 7.94 | ||||
10H | 10H | 80.14 | 11.47 | 8.39 |
Fig. 3. Backscattered SEM images and SAED pattern of the Mg88Y8Zn4(#1) alloy: (a) microstructure after equilibration at 500°C; (b) microstructure after equilibration at 400°C; (c) SAED pattern of [-1-120]hcp zone axis taken from the strip-shaped phase with dark-gray contrast in the alloy equilibrated at 500°C.
LPSO | Composition of Alloy | Composition of Phase (at.%) | Ideal Composition | Refs. |
---|---|---|---|---|
14H | Mg83Y8.5Zn8.5 (at.%) | Mg88Y5.8Zn6.2 | Mg12Y1Zn1 | [ |
Mg97Y2Zn1 (at.%) | Mg87Y6Zn7 | - | [ | |
Mg97Y2Zn1 (at.%) | Mg94Zn2.0±1.0Y4.0±2.0 | Mg35Y4Zn3 | [ | |
Mg86Y8Zn6 (at.%) | Mg87.56Y7.10Zn5.32 | Mg12Y1Zn1 | [ | |
- | Mg85.9Y7.9Zn6.1 | - | [ | |
Mg89.4Y8Zn2Zr0.6 (wt.%) | Mg87Y7±2Zn6±2 | Mg12Y1Zn1 | [ | |
18R | Mg97Y2Zn1 (at.%) | Mg90Y6Zn4 | - | [ |
Mg89.4Y8Zn2Zr0.6 (wt.%) | Mg84Y8±2Zn8±2 | Mg10Y1Zn1 | [ | |
Mg97Y2Zn1 (at.%) | Mg94Y4±2Zn2±1 | - | [ | |
Mg85Y9Zn6 (at.%) | Mg85Y9Zn6 | Mg29Y4Zn3 | [ | |
Mg97Y2Zn1 (at.%) | Mg92.3Y6.2Zn1.5 | - | [ | |
Mg97Y1.7Zn1.3 (at.%) | Mg89.7Y5.6Zn4.6 | Mg12Y1Zn1 | [ |
Table 3 The experimentally determined compositions of 14H and 18R of the Mg-Y-Zn system, together with the relevant ideal compositions summarized from the references with direct proofs.
LPSO | Composition of Alloy | Composition of Phase (at.%) | Ideal Composition | Refs. |
---|---|---|---|---|
14H | Mg83Y8.5Zn8.5 (at.%) | Mg88Y5.8Zn6.2 | Mg12Y1Zn1 | [ |
Mg97Y2Zn1 (at.%) | Mg87Y6Zn7 | - | [ | |
Mg97Y2Zn1 (at.%) | Mg94Zn2.0±1.0Y4.0±2.0 | Mg35Y4Zn3 | [ | |
Mg86Y8Zn6 (at.%) | Mg87.56Y7.10Zn5.32 | Mg12Y1Zn1 | [ | |
- | Mg85.9Y7.9Zn6.1 | - | [ | |
Mg89.4Y8Zn2Zr0.6 (wt.%) | Mg87Y7±2Zn6±2 | Mg12Y1Zn1 | [ | |
18R | Mg97Y2Zn1 (at.%) | Mg90Y6Zn4 | - | [ |
Mg89.4Y8Zn2Zr0.6 (wt.%) | Mg84Y8±2Zn8±2 | Mg10Y1Zn1 | [ | |
Mg97Y2Zn1 (at.%) | Mg94Y4±2Zn2±1 | - | [ | |
Mg85Y9Zn6 (at.%) | Mg85Y9Zn6 | Mg29Y4Zn3 | [ | |
Mg97Y2Zn1 (at.%) | Mg92.3Y6.2Zn1.5 | - | [ | |
Mg97Y1.7Zn1.3 (at.%) | Mg89.7Y5.6Zn4.6 | Mg12Y1Zn1 | [ |
Fig. 6. TEM images, SAED patterns and HAADF-STEM image of the Mg86Y8Zn6(#2) / Mg95Y3Zn2(#3) alloys equilibrated at 500°C: (a) and (b) bright-field TEM images of the Mg86Y8Zn6(#2) alloy at different scales; (c) and (d) bright-field TEM images of the Mg95Y3Zn2(#3) alloy at different scales; (e) SAED pattern of [11-20]hcp zone axis taken from area A in (a); (f) SAED pattern of [1-100]hcp zone axis taken from area B in (a); (g) Fourier-filtered HAADF-STEM image of the LPSO phases in Mg95Y3Zn2 (#3) alloy, with the original HAADF-STEM image at the top part. The electron beam is parallel to [11-20]hcp.
Fig. 7. (a) and (b) backscattered SEM images of the Mg95Y2Zn3(#4) alloy equilibrated at 500 and 400°C, respectively; (c) Fourier-filtered HAADF-STEM image of the LPSO phases in the Mg95Y2Zn3(#4) alloy, with the original HAADF-STEM image at the top part. The electron beam is parallel to [11-20]hcp; (d) SAED pattern of [-1-120]hcp zone axis taken from the gray phase in (a).
Fig. 9. Bright-field TEM images of the Mg80Y15Zn5(#5) alloy equilibrated at 500°C: (a) and (b) micromorphology images of the Mg80Y15Zn5(#5) alloy at different scales; (c) and (d) SAED patterns of [1-100]hcp zone axis.
Fig. 10. Backscattered SEM images showing the microstructures of the Mg74Y14Zn12(#6) alloy equilibrated at different temperatures: (a) 500°C; (b) 400°C.
Fig. 11. TEM images and SAED patterns of the Mg74Y14Zn12(#6) alloy equilibrated at 500°C: (a) and (b) bright-field TEM images at different scales; (c) SAED pattern of [11-20]hcp zone axis taken from area B in (a); (d) SAED pattern of [-12-10]hcp zone axis taken from area C in (a); (e) Fourier-filtered HAADF-STEM image of the LPSO phases. The left part is the original HAADF-STEM image. The electron beam is parallel to [11-20]hcp.
Fig. 12. Atomic models viewed along [-12-10]hcp showing the ideal crystal structure of LPSO phases and the relationship between the ideal crystal structures of the LPSO phases and the Fourier-filtered HAADF-STEM images: (a) 18R; (b) 14H; (c) 10H.
[1] |
W.D. Qin, J.S. Li, H.C. Kou, X.F. Gu, L. Kecskes, H. Chang, L. Zhou, J. Non-Cryst. Solids, 354 (2008), pp. 5368-5371.
DOI URL |
[2] |
Z.G. Li, X. Hui, C.M. Zhang, M.L. Wang, G.L. Chen, Mater. Lett., 61 (2007), pp. 5018-5021.
DOI URL |
[3] |
G.B. Liu, P. Gao, S.Q. Yang, Z. Xue, M.L. Zhang, J. Alloy. Compd., 588 (2014), pp. 59-63.
DOI URL |
[4] |
Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K.C. Chou, J. Mater. Sci. Technol., 44 (2020), pp. 171-190.
DOI URL |
[5] |
Z.L. Wang, Q. Luo, S.L. Chen, K.C. Chou, Q. Li, J. Alloy. Compd., 649 (2015), pp. 1306-1314.
DOI URL |
[6] |
Y. Kawamura, K. Hayashi, A. Inoue, T. Masumoto, Mater. Trans., 42 (2001), pp. 1172-1176.
DOI URL |
[7] |
X. Hui, W. Dong, G.L. Chen, K.F. Yao, Acta Mater., 55 (2007), pp. 907-920.
DOI URL |
[8] |
S. Kalinichenka, L. Röntzsch, B. Kieback, Int. J. Hydrogen Energ., 34 (2009), pp. 7749-7755.
DOI URL |
[9] |
Q. Luo, J.D. Li, B. Li, B. Liu, H.Y. Shao, Q. Li, J. Magnes. Alloy., 7 (2019), pp. 58-71.
DOI URL |
[10] |
W. Zhang, L.L. Tan, D.R. Ni, J.X. Chen, Y.C. Zhao, L. Liu, C.J. Shuai, K. Yang, A. Atrens, M.C. Zhao, J. Mater. Sci. Technol., 35 (2019), pp. 777-783.
DOI PMID |
[11] |
Y.Y. Kang, B.N. Du, Y.M. Li, B.J. Wang, L.Y. Sheng, L.Q. Shao, Y.F. Zheng, T.F. Xi, J. Mater. Sci. Technol., 35 (2019), pp. 6-18.
DOI URL |
[12] |
L. Bao, Q.C. Le, Z.Q. Zhang, C. Esling, Mater. Lett., 235 (2019), pp. 189-192.
DOI URL |
[13] |
K.R. Rakesh, S. Bontha, M.R. Ramesh, M. Das, V.K. Balla, Appl. Surf. Sci., 480 (2019), pp. 70-82.
DOI PMID |
[14] |
S. Lesz, J. Kraczla, R. Nowosielski, Arch. Civ. Mech. Eng., 18 (2018), pp. 1288-1299.
DOI URL |
[15] |
Q. Luo, C. Zhai, Q.F. Gu, W.F. Zhu, Q. Li, J. Alloy. Compd., 814 (2020), 152297.
DOI URL |
[16] |
A. Inoue, Y. Kawamura, M. Matsushita, K. Hayashi, J. Koike, J. Mater. Res., 16 (2001), pp. 1894-1900.
DOI URL |
[17] |
Z.P. Luo, S.Q. Zhang, J. Mater. Sci. Lett., 19 (2000), pp. 813-815.
DOI URL |
[18] |
T. Itoi, T. Seimiya, Y. Kawamura, M. Hirohashi, Scripta Mater., 51 (2004), pp. 107-111.
DOI URL |
[19] |
M. Matsuda, S. Ii, Y. Kawamura, Y. Ikuhara, M. Nishida, Mater. Sci. Eng. : A, 393 (2005), pp. 269-274.
DOI URL |
[20] |
E. Abe, A. Ono, T. Itoi, M. Yamasaki, Y. Kawamura, Phil. Mag. Lett., 91 (2011), pp. 690-696.
DOI URL |
[21] |
M. Yamasaki, M. Matsushita, K. Hagihara, H. Izuno, E. Abe, Y. Kawamura, Scripta Mater., 78-79 (2014), pp. 13-16.
DOI URL |
[22] |
M. Jiang, X.L. Su, H.X. Li, Y.P. Ren, G.W. Qin, J. Alloy. Compd., 593 (2014), pp. 141-147.
DOI URL |
[23] |
Y.X. Du, Y.J. Wu, L.M. Peng, J. Chen, X.Q. Zeng, W.J. Ding, Mater. Lett., 169 (2016), pp. 168-171.
DOI URL |
[24] |
D. Egusa, E. Abe, Acta Mater., 60 (2012), pp. 166-178.
DOI URL |
[25] |
X. Gu, T. Furuhara, L. Chen, P. Yang, Scripta Mater., 187 (2020), pp. 19-23.
DOI URL |
[26] |
C. Liu, Y. Zhu, Q. Luo, B. Liu, Q. Gu, Q. Li, J. Mater. Sci. Technol., 34 (2018), pp. 2235-2239.
DOI URL |
[27] |
Y.M. Zhu, A.J. Morton, J.F. Nie, Acta Mater., 60 (2012), pp. 6562-6572.
DOI URL |
[28] |
Y.L. Guo, Q. Luo, B. Liu, Q. Li, Scripta Mater., 178 (2020), pp. 422-427.
DOI URL |
[29] |
J.E. Saal, C. Wolverton, Acta Mater., 68 (2014), pp. 325-338.
DOI URL |
[30] |
Y.M. Zhu, M. Weyland, A.J. Morton, K. Oh-ishi, K. Hono, J.F. Nie, Scripta Mater., 60 (2009), pp. 980-983.
DOI URL |
[31] |
H. Liu, F. Xue, J. Bai, A.B. Ma, J.H. Jiang, J. Mater. Sci. Technol., 32 (2016), pp. 1267-1273.
DOI URL |
[32] |
Y.M. Zhu, A.J. Morton, J.F. Nie, Acta Mater., 58 (2010), pp. 2936-2947.
DOI URL |
[33] | H. Liu, K. Yan, J.L. Yan, F. Xue, J.P. Sun, J.H. Jiang, A.B. Ma, T. Nonferr, Metal Soc., 27 (2017), pp. 63-72. |
[34] |
J. Gröbner, A. Kozlov, X.Y. Fang, J. Geng, J.F. Nie, R. Schmid-Fetzer, Acta Mater., 60 (2012), pp. 5948-5962.
DOI URL |
[35] |
J. Wu, Q. Shi, Y.L. Chiu, Mater. Charact., 129 (2017), pp. 46-52.
DOI URL |
[36] | R. Schmid-Fetzer, J. Groebner, M. Yamasaki, Y. Kawamura, H. Okuda, S. Miura, T. Horiuchi, J.F. Korea, October 12 (2015). |
[37] | Jade 5.0, XRD Pattern Processing Materials Data Inc (1999). |
[38] | F. John, F. Tim, Acta Cryst., B58 (2002), pp. 325-332. |
[39] |
Z. Leng, J.H. Zhang, M.L. Zhang, X.H. Liu, H.B. Zhan, R.Z. Wu, Mater. Sci. Eng. : A, 540 (2012), pp. 38-45.
DOI URL |
[40] |
S.M. Zhu, R. Lapovok, J.F. Nie, Y. Estrin, S.N. Mathaudhu, Mater. Sci. Eng. : A, 692 (2017), pp. 35-42.
DOI URL |
[41] | E.M. Padezhnova, E.V. Mel’Nik, R.A. Miliyevskiy, T.V. Dobatkina, V.V. Kinzhibalo Russ, Metall., 4 (1982), p. 185 . |
[42] | E. Abe, Y. Kawamura, K. Hayashi., A. Inoue Acta Mater., 50 (2002), pp. 3845-3857. |
[43] |
D.H. Ping, K. Hono, Y. Kawamura, A. Inoue, Phil. Mag. Lett., 82 (2002), pp. 543-551.
DOI URL |
[44] |
T. Horiuchit, A. Ono, K. Yoshioka, T. Watanabe, K. Ohkubo, S. Miura, T. Mohri, S. Tamura, Mater. Trans., 49 (2008), pp. 2247-2253.
DOI URL |
[45] |
G. Shao, V. Varsani, Z. Fan, Calphad, 30 (2006) 286-29.
DOI URL |
[1] | Iuliana Lichioiu, Ildiko Peter, Bela Varga, Mario Rosso. Preparation and Structural Characterization of Rapidly Solidified Al–Cu Alloys [J]. J. Mater. Sci. Technol., 2014, 30(4): 394-400. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||