J. Mater. Sci. Technol. ›› 2021, Vol. 68: 160-171.DOI: 10.1016/j.jmst.2020.08.011
• Research Article • Previous Articles Next Articles
Mingjun Lia,b,*(), Christoph Schlaichb, Jianguang Zhangb, Ievgen S. Donskyib,d, Karin Schwibbertc, Frank Schreiberc, Yi Xiab, Jörg Radnikd, Tanja Schwerdtlee, Rainer Haagb,*(
)
Received:
2020-04-23
Revised:
2020-06-12
Accepted:
2020-06-18
Published:
2021-03-30
Online:
2021-05-01
Contact:
Mingjun Li,Rainer Haag
About author:
haag@chemie.fu-berlin.de(R. Haag).Mingjun Li, Christoph Schlaich, Jianguang Zhang, Ievgen S. Donskyi, Karin Schwibbert, Frank Schreiber, Yi Xia, Jörg Radnik, Tanja Schwerdtle, Rainer Haag. Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction[J]. J. Mater. Sci. Technol., 2021, 68: 160-171.
Scheme 1. The straightforward technique to prepare biomimetic mussel-inspired antifouling surface, which confers implants the abilities of osteogenesis promotion and prevention of bacterial infection, exhibits tremendous potential in orthopaedic and dental applications.
Gene | Primer Sequence (5′-3′) |
---|---|
RUNX-2 | F: GGTATGTCCGCCACCACTC R: TGACGAAGTGCCATAGTAGAGATA |
ALP | F: GTGGAGTATGAGAGTGACGAGAA |
R: AGATGAAGTGGGAGTGCTTGTAT | |
GAPDH | F: GCAAGAGCACAAGAGGAAGAG |
R: AAGGGGTCTACATGGCAACT |
Table 1 Primer sequences used in this test.
Gene | Primer Sequence (5′-3′) |
---|---|
RUNX-2 | F: GGTATGTCCGCCACCACTC R: TGACGAAGTGCCATAGTAGAGATA |
ALP | F: GTGGAGTATGAGAGTGACGAGAA |
R: AGATGAAGTGGGAGTGCTTGTAT | |
GAPDH | F: GCAAGAGCACAAGAGGAAGAG |
R: AAGGGGTCTACATGGCAACT |
Fig. 1. Images of synthesized PCL membranes (a), SEM image of CuNPs incorporated PCL fibres (b), and size bar chart fitted with Gaussian curve of CuNPs (c).
Fig. 2. Characterization of functionalized PCL membranes. SEM images and XPS spectra of PCL (a, b), PCL-(MI-hPG) (c, d), and PCL-(MI-hPG)-CuNPs (e, f), respectively, where the particles in red circles (e) represent the CuNPs confirmed by XPS (f), scale bar 1 μm. Insets: images of 3 μL water droplets on these surfaces and the results of WCA measurements.
Surfaces | Relative molar ratio of surface element (at.%) | |||
---|---|---|---|---|
C 1s | N 1s | O 1s | Cu 2p | |
PCL | 77.6 | 0 | 22.4 | - |
PCL-(MI-hPG) | 71.4 | 0.8 | 27.8 | - |
PCL-(MI-hPG)-CuNPs | 71.1 | 1.1 | 27.2 | 0.6 |
Table 2 Elemental composition of the polymer coated surfaces measured by XPS analysis.
Surfaces | Relative molar ratio of surface element (at.%) | |||
---|---|---|---|---|
C 1s | N 1s | O 1s | Cu 2p | |
PCL | 77.6 | 0 | 22.4 | - |
PCL-(MI-hPG) | 71.4 | 0.8 | 27.8 | - |
PCL-(MI-hPG)-CuNPs | 71.1 | 1.1 | 27.2 | 0.6 |
Surfaces | Relative molar ratio of surface element (at.%) | |||
---|---|---|---|---|
C 1s | N 1s | O 1s | Cu 2p | |
1 week | 72.8 | 0.4 | 26.6 | 0.2 |
2 weeks | 72.0 | 1.0 | 26.9 | 0.1 |
4 weeks | 71.8 | 0.8 | 27.3 | 0.1 |
Table 3 Elemental composition of the PCL-(MI-hPG)-CuNPs coated surfaces after immersed in Milli-Q water for 1-4 weeks measured by XPS analysis.
Surfaces | Relative molar ratio of surface element (at.%) | |||
---|---|---|---|---|
C 1s | N 1s | O 1s | Cu 2p | |
1 week | 72.8 | 0.4 | 26.6 | 0.2 |
2 weeks | 72.0 | 1.0 | 26.9 | 0.1 |
4 weeks | 71.8 | 0.8 | 27.3 | 0.1 |
Fig. 3. XPS data of functionalized PCL membranes after immersed in Milli-Q water for 1 week (a), 2 weeks (b), and 4 weeks (c). Fresh Milli-Q water was exchanged each day.
Fig. 4. CFU counts of survival E. coli (DH5α) (a) and S. aureus (SH1000) (b) with the initial bacterial concentration of 105 CFU/mL. The detection limit is shown by the horizontal line. Data are presented as the mean ± SD, n = 4. Statistically significant differences at the same period are indicated **p < 0.01 compared with PCL sample.
Fig. 5. CFU counts of survival multi-resistant E. coli J53 (pMG101) ΔblaZ with the initial bacterial concentration of 104 CFU/mL (The detection limit is shown by the horizontal line) (a); antibacterial assessment of CuCl2 solutions against E. coli (DH5α, 105 CFU/mL) (b); peroxidase activity tests by using different volumes of PCL-(MI-hPG)-CuNPs leachate after 24 h immersion in Milli-Q water and the corresponding controls in the absence of CuNPs or horseradish peroxidase (HRP) (c); Cu releasing profile in Milli-Q water (d). Data are presented as the mean ± SD, n = 4. Statistically significant differences at the same period are indicated **p < 0.01 compared with PCL sample or blank control.
Fig. 6. CFU counts of survival E. coli (DH5α) with the initial bacterial concentration of 105 CFU/mL. The detect limit is shown by the horizontal line. Antibacterial rate was labeled in the figure. Data are presented as the mean ± SD, n = 4. Statistically significant differences in the same period are indicated **p < 0.01 compared with PCL sample.
Fig. 7. Antifouling properties of PCL-(MI-hPG)-CuNPs against E. coli (DH5α). Representative images of adhered cells stained with DAPI on PCL (a), PCL-(MI-hPG) (b), and PCL-(MI-hPG)-CuNPs (c). FITC-BSA adsorption was tested on PCL (d), PCL-(MI-hPG) (e), and PCL-(MI-hPG)-CuNPs (f). The corresponding quantitative measurements of bacteria attachment via DAPI staining (g) and FITC-BSA adsorption (h). Statistically significant differences are indicated **p < 0.01 compared with PCL samples.
Fig. 8. Antifouling properties of PCL-(MI-hPG)-CuNPs against E. coli (DH5α). Bacterial viability evaluation was performed by the live/dead backlight bacterial viability kit. Representative images on PCL (a-c), PCL-(MI-hPG) (d-f), and PCL-(MI-hPG)-CuNPs (g-i).
Fig. 9. Biomimetic CuNPs-incorporated PCL surfaces showed improved cell adhesion and proliferation behaviors. The morphologies of CFSE-labeled hMSCs cells after seeding on different surfaces for 4 h, PCL (a), PCL-(MI-hPG) (b), and PCL-(MI-hPG)-CuNPs (c). Quantification of the adherent CFSE-labeled hMSCs cells, fluorescence density was normalized to that of PCL samples (g). Live/dead stain of the cells after seeding on the surface of fibers for 3 days, PCL (d), PCL-(MI-hPG) (e), and PCL-(MI-hPG)-CuNPs (f). Cell proliferation of hMSCs on different surfaces tested via MTT (h). Data are presented as the mean ± SD, n = 4. Statistically significant differences are indicated *p < 0.05 and **p < 0.01 compared with PCL samples.
Fig. 10. Biomimetic CuNPs-incorporated PCL surfaces exhibited enhanced osteogenesis compared to the untreated surfaces in the osteogenic differentiation medium. Representative images of ALP staining of hMSCs cultured on different surfaces after 14 days, PCL (a), PCL-(MI-hPG) (b), and PCL-(MI-hPG)-CuNPs (c). Representative images of Alizarin Red S staining after 28 days, PCL (e), PCL-(MI-hPG) (f), and PCL-(MI-hPG)-CuNPs (g). Quantitative ALP activity of hMSCs after 14 days of culture in osteogenic differentiation medium (d). Quantification of the Alizarin Red S stained mineral layer, dissolved in 5% formic acid solution, determined using a plate reader (h). Osteoblast-related gene expressions of ALP (i) and RUNX2 (j) on different surfaces. The data were generated by qRT-PCR and presented as relative to control cells cultured in PCL by using normalization against a GAPDH reference. Data are presented as the mean ± SD, n = 4. Statistically significant differences are indicated *p < 0.05 and **p < 0.01 compared with PCL samples.
[1] | Y. Shi, L. Wang, Y. Niu, N. Yu, P. Xing, L. Dong, C. Wang, Adv. Funct. Mater., 28 (2018), 1804483. |
[2] |
J. Min, K.Y. Choi, E.C. Dreaden, R.F. Padera, R.D. Braatz, M. Spector, P.T. Hammond, ACS Nano, 10 (2016), pp. 4441-4450.
DOI URL |
[3] |
J. Li, L. Tan, X. Liu, Z. Cui, X. Yang, K.W.K. Yeung, P.K. Chu, S. Wu, ACS Nano, 11 (2017), pp. 11250-11263.
DOI URL |
[4] | A. Mathew, C. Vaquette, S. Hashimi, I. Rathnayake, F. Huygens, D.W. Hutmacher, S. Ivanovski, Adv. Healthc. Mater., 6 (2017), 1601345. |
[5] | P. Mostafalu, G. Kiaee, G. Giatsidis, A. Khalilpour, M. Nabavinia, M.R. Dokmeci, S. Sonkusale, D.P. Orgill, A. Tamayol, A. Khademhosseini, Adv. Funct. Mater., 27 (2017), 1702399. |
[6] | A. Nasajpour, S. Ansari, C. Rinoldi, A.S. Rad, T. Aghaloo, S.R. Shin, Y.K. Mishra, R. Adelung, W. Swieszkowski, N. Annabi, A. Khademhosseini, A. Moshaverinia, A. Tamayol, Adv. Funct. Mater., 28 (2018), 1703437. |
[7] |
C.R. Arciola, D. Campoccia, L. Montanaro, Nat. Rev. Microbiol., 16 (2018), pp. 397-409.
DOI URL |
[8] |
M. Cloutier, D. Mantovani, F. Rosei, Trends Biotechnol., 33 (2015), pp. 637-652.
DOI URL |
[9] |
H.C. Flemming, J. Wingender, Nat. Rev. Microbiol., 8 (2010), pp. 623-633.
DOI URL |
[10] |
S. Swar, V. Máková, J. Horáková, P. Kejzlar, P. Parma, I. Stibor, Eur. Polym. J., 122 (2020), 109392.
DOI URL |
[11] |
I. Banerjee, R.C. Pangule, R.S. Kane, Adv. Mater., 23 (2011), pp. 690-718.
DOI URL |
[12] |
H.C. Hung, P. Jain, P. Zhang, F. Sun, A. Sinclair, T. Bai, B. Li, K. Wu, C. Tsao, E.J. Liu, Adv. Mater., 29 (2017), 1700617.
DOI URL |
[13] |
L. Hall-Stoodley, J.W. Costerton, P. Stoodley, Nat. Rev. Microbiol., 2 (2004), pp. 95-108.
PMID |
[14] |
H. Koo, R.N. Allan, R.P. Howlin, P. Stoodley, L. Hall-Stoodley, Nat. Rev. Microbiol., 15 (2017), pp. 740-755.
DOI URL |
[15] |
J. Raphel, M. Holodniy, S.B. Goodman, S.C. Heilshorn, Biomaterials, 84 (2016), pp. 301-314.
DOI URL |
[16] |
C. Zhang, Y. Ou, W.X. Lei, L.S. Wan, J. Ji, Z.K. Xu, Angew. Chem. Int. Ed., 128 (2016), pp. 3106-3109.
DOI URL |
[17] |
T.S. Sileika, H.D. Kim, P. Maniak, P.B. Messersmith, ACS Appl. Mater. Interfaces, 3 (2011), pp. 4602-4610.
DOI URL |
[18] |
C. Mao, Y. Xiang, X. Liu, Z. Cui, X. Yang, K.W.K. Yeung, H. Pan, X. Wang, P.K. Chu, S. Wu, ACS Nano, 11 (2017), pp. 9010-9021.
DOI URL |
[19] |
G. Pan, S. Sun, W. Zhang, R. Zhao, W. Cui, F. He, L. Huang, S.H. Lee, K.J. Shea, Q. Shi, H. Yang, J. Am. Chem. Soc., 138 (2016), pp. 15078-15086.
DOI URL |
[20] |
M. Li, C. Schlaich, M.W. Kulka, I.S. Donskyi, T. Schwerdtle, W.E.S. Unger,, R. Haag, J. Mater. Chem. B, 7 (2019), pp. 3438-3445.
DOI URL |
[21] |
Q. Wei, T. Becherer, P.L. Noeske, I. Grunwald, R. Haag, Adv. Mater., 26 (2014), pp. 2688-2693.
DOI URL |
[22] |
B.P. Lee, P.B. Messersmith, J.N. Israelachvili, J.H. Waite, Annu. Rev. Mater. Res., 41 (2011), pp. 99-132.
DOI URL |
[23] |
Q. Wei, S. Krysiak, K. Achazi, T. Becherer, P.L. Noeske, F. Paulus, H. Liebe, I. Grunwald, J. Dernedde, A. Hartwig, T. Hugel, R. Haag, Colloids Surf. B-Biointerfaces, 122 (2014), pp. 684-692.
DOI URL |
[24] |
H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Science, 318 (2007), pp. 426-430.
DOI URL |
[25] |
C. Schlaich, M. Li, C. Cheng, I.S. Donskyi, L. Yu, G. Song, E. Osorio, Q. Wei, R. Haag, Adv. Mater. Interfaces, 5 (2018), 1701254.
DOI URL |
[26] |
C. Schlaich, Q. Wei, R. Haag, Langmuir, 33 (2017), pp. 9508-9520.
DOI URL |
[27] |
C. Schlaich, L.C. Camacho, L. Yu, K. Achazi, Q. Wei, R. Haag, ACS Appl. Mater. Interfaces, 8 (2016), pp. 29117-29127.
DOI URL |
[28] |
E.J. Tobin, Adv. Drug Deliv. Rev., 112 (2017), pp. 88-100.
DOI URL |
[29] |
H.D. Kim, S. Amirthalingam, S.L. Kim, S.S. Lee, J. Rangasamy, N.S. Hwang, Adv. Healthc. Mater., 6 (2017), 1700612.
DOI URL |
[30] |
E.A. Makris, A.H. Gomoll, K.N. Malizos, J.C. Hu, K.A. Athanasiou, Nat. Rev. Rheumatol., 11 (2015), pp. 21-34.
DOI URL |
[31] |
G.S. Hussey, J.L. Dziki, S.F. Badylak, Nat. Rev. Mater., 3 (2018), pp. 159-173.
DOI URL |
[32] |
X. Hu, Y. Wang, Y. Tan, J. Wang, H. Liu, Y. Wang, S. Yang, M. Shi, S. Zhao, Y. Zhang, Q. Yuan, Adv. Mater., 29 (2017), 1605235.
DOI URL |
[33] |
S.J. Lee, D. Lee, T.R. Yoon, H.K. Kim, H.H. Jo, J.S. Park, J.H. Lee, W.D. Kim, I.K. Kwon, S.A. Park, Acta Biomater., 40 (2016), pp. 182-191.
DOI URL |
[34] |
X. Wang, S. Li, C. Yan, P. Liu, J. Ding, Nano Lett., 15 (2015), pp. 1457-1467.
DOI URL |
[35] |
E. O’Neill, G. Awale, L. Daneshmandi, O. Umerah, K.W.H. Lo, Drug Discov. Today, 23 (2018), pp. 879-890.
DOI URL |
[36] |
S.J. Lam, N.M. O’Brien-Simpson, N. Pantarat, A. Sulistio, E.H. Wong, Y.Y. Chen, J.C. Lenzo, J.A. Holden, A. Blencowe, E.C. Reynolds, G.G. Qiao, Nat. Microbiol., 1 (2016), p. 16162.
DOI URL |
[37] |
R. Joseph, A. Naugolny, M. Feldman, I.M. Herzog, M. Fridman, Y. Cohen, J. Am. Chem. Soc., 138 (2016), pp. 754-757.
DOI URL |
[38] |
E.H. Schwab, T.L.M. Pohl, T. Haraszti, G.K. Schwaerzer, C. Hiepen, J.P. Spatz, P. Knaus, E.A. Cavalcanti-Adam, Nano Lett., 15 (2015), pp. 1526-1534.
DOI URL |
[39] |
T. Ren, M. Yang, K. Wang, Y. Zhang, J. He, ACS Appl. Mater. Interfaces, 10 (2018), pp. 25717-25725.
DOI URL |
[40] |
Y. Yan, J. Zhang, L. Ren, C. Tang, Chem. Soc. Rev., 45 (2016), pp. 5232-5263.
DOI PMID |
[41] | M.C. Linder, M. Hazegh-Azam, Am. J. Clin. Nutr., 63 (1996), pp. 797s-811s. |
[42] |
Y.N. Slavin, J. Asnis, U.O. Häfeli, H. Bach, J. Nanobiotechnol., 15 (2017), p. 65.
DOI PMID |
[43] | L.P. Arendsen, R. Thakar, A.H. Sultan, Clin. Microbiol. Rev., 32 (2019), pp. e00125-00118. |
[44] |
Y. Lu, L. Li, Y. Zhu, X. Wang, M. Li, Z. Lin, X. Hu, Y. Zhang, Q. Yin, H. Xia, C. Mao, ACS Appl. Mater. Interfaces, 10 (2018), pp. 127-138.
DOI URL |
[45] | M. Li, L. Nan, D. Xu, G. Ren, K. Yang, J. Mater. Sci. Technol., 31 (2015), pp. 243-251. |
[46] |
X. Zhang, C. Yang, K. Yang, ACS Appl. Mater. Interfaces, 12 (2019), pp. 361-372.
DOI URL |
[47] |
S.J. Hollister, Nat. Mater., 4 (2005), p. 518.
PMID |
[48] |
G. Yang, X. Li, Y. He, J. Ma, G. Ni, S. Zhou, Prog. Polym. Sci., 81 (2018), pp. 80-113.
DOI URL |
[49] |
X. Shi, L. Li, S. Ostrovidov, Y. Shu, A. Khademhosseini, H. Wu, ACS Appl. Mater. Interfaces, 6 (2014), pp. 11915-11923.
DOI URL |
[50] | M.M. Hasani-Sadrabadi, P. Sarrion, N. Nakatsuka, T.D. Young, N. Taghdiri, S. Ansari, T. Aghaloo, S. Li, A. Khademhosseini, P.S. Weiss, Moshaverinia ACS Nano, 13 (2019), pp. 3830-3838. |
[51] |
S.J. Lee, D. Lee, T.R. Yoon, H.K. Kim, H.H. Jo, J.S. Park, J.H. Lee, W.D. Kim, I.K. Kwon, S.A. Park, Acta Biomater., 40 (2016), pp. 182-191.
DOI URL |
[52] |
A. Andukuri, M. Kushwaha, A. Tambralli, J.M. Anderson, D.R. Dean, J.L. Berry, Y.D. Sohn, Y.S. Yoon, B.C. Brott, H.W. Jun, Acta Biomater., 7 (2011), pp. 225-233.
DOI URL |
[53] |
Q. Yu, Y. Han, X. Wang, C. Qin, D. Zhai, Z. Yi, J. Chang, Y. Xiao, C. Wu, ACS Nano, 12 (2018), pp. 2695-2707.
DOI URL |
[54] |
A.R.K. Sasikala, A.R. Unnithan, R.G. Thomas, S.W. Ko, Y.Y. Jeong, C.H. Park, C.S. Kim, Adv. Funct. Mater., 28 (2018), 1704793.
DOI URL |
[55] | C.P. Randall, A. Gupta, N. Jackson, D. Busse, A.J. O’Neill, J. Antimicrob. Chemother., 70 (2015), pp. 1037-1046. |
[56] |
Q. Wei, R. Haag, Mater. Horiz., 2 (2015), pp. 567-577.
DOI URL |
[57] |
G.L. Mchugh, R. Moellering, C. Hopkins, M. Swartz, Lancet, 305 (1975), pp. 235-240.
DOI URL |
[58] |
T.M. Nguyen, A. Arthur, R. Panagopoulos, S. Paton, J.D. Hayball, A.C. Zannettino, L.E. Purton, K. Matsuo, S. Gronthos, Stem Cells, 33 (2015), pp. 2838-2849.
DOI PMID |
[59] |
C. Chen, I. Ahmed, L. Fruk, Nanoscale, 5 (2013), pp. 11610-11614.
DOI URL |
[60] |
J. Zhang, W. Chen, L. Yu, M. Li, F. Neumann, W. Li, R. Haag, ACS Appl. Nano Mater., 1 (2018), pp. 1513-1521.
DOI URL |
[61] |
M. Li, L. Gao, C. Schlaich, J. Zhang, I.S. Donskyi, G. Yu, W. Li, Z. Tu, J. Rolff, T. Schwerdtle, R. Haag, N. Ma, ACS Appl. Mater. Interfaces, 9 (2017), pp. 35411-35418.
DOI URL |
[62] | C. Pal, K. Asiani, S. Arya, C. Rensing, D.J. Stekel, D.J. Larsson, J.L. Hobman, Adv. Microb. Physiol., 70 (2017), pp. 261-313. |
[63] |
J. Zhang, C. Cheng, J.L. Cuellar-Camacho, M. Li, Y. Xia, W. Li, R. Haag, Adv. Funct. Mater., 28 (2018), p. 1804773.
DOI URL |
[64] |
Y. Xia, S. Li, C. Nie, J. Zhang, S. Zhou, H. Yang, M. Li, W. Li, C. Cheng, R. Haag, Appl. Mater. Today, 16 (2019), pp. 518-528.
DOI PMID |
[1] | Mingjun Li, Li Nan, Chunyong Liang, Ziqing Sun, Lei Yang, Ke Yang. Antibacterial behavior and related mechanisms of martensitic Cu-bearing stainless steel evaluated by a mixed infection model of Escherichia coli and Staphylococcus aureus in vitro [J]. J. Mater. Sci. Technol., 2021, 62(0): 139-147. |
[2] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
[3] | Donglin Han, Yuan Li, Xiangmei Liu, Kelvin Wai Kwok Yeung, Yufeng Zheng, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shengli Zhu, Xianbao Wang, Shuilin Wu. Photothermy-strengthened photocatalytic activity of polydopamine-modified metal-organic frameworks for rapid therapy of bacteria-infected wounds [J]. J. Mater. Sci. Technol., 2021, 62(0): 83-95. |
[4] | Li Liu, Wan Peng, Xiao Zhang, Jiangmei Peng, Pingsheng Liu, Jian Shen. Rational design of phosphonate/quaternary amine block polymer as an high-efficiency antibacterial coating for metallic substrates [J]. J. Mater. Sci. Technol., 2021, 62(0): 96-106. |
[5] | Mi Wu, Wen Liu, Jinrong Yao, Zhengzhong Shao, Xin Chen. Silk microfibrous mats with long-lasting antimicrobial function [J]. J. Mater. Sci. Technol., 2021, 63(0): 203-209. |
[6] | Yuxuan Mao, Peng Li, Jiewei Yin, Yanjie Bai, Huan Zhou, Xiao Lin, Huilin Yang, Lei Yang. Starch-based adhesive hydrogel with gel-point viscoelastic behavior and its application in wound sealing and hemostasis [J]. J. Mater. Sci. Technol., 2021, 63(0): 228-235. |
[7] | Shi Cheng, Jin Ke, Mengyu Yao, Hongwei Shao, Jielong Zhou, Ming Wang, Xiongfa Ji, Guoqing Zhong, Feng Peng, Limin Ma, Yu Zhang. Improved osteointegration and angiogenesis of strontium-incorporated 3D-printed tantalum scaffold via bioinspired polydopamine coating [J]. J. Mater. Sci. Technol., 2021, 69(0): 106-118. |
[8] | Qian Wu, Xiangmei Liu, Bo Li, Lei Tan, Yong Han, Zhaoyang Li, Yanqin Liang, Zhenduo Cui, Shengli Zhu, Shuilin Wu, Yufeng Zheng. Eco-friendly and degradable red phosphorus nanoparticles for rapid microbial sterilization under visible light [J]. J. Mater. Sci. Technol., 2021, 67(0): 70-79. |
[9] | Run Huang, Lei Liu, Bo Li, Liang Qin, Lei Huang, Kelvin W.K. Yeung, Yong Han. Nanograins on Ti-25Nb-3Mo-2Sn-3Zr alloy facilitate fabricating biological surface through dual-ion implantation to concurrently modulate the osteogenic functions of mesenchymal stem cells and kill bacteria [J]. J. Mater. Sci. Technol., 2021, 73(0): 31-44. |
[10] | Xiaofan Zhai, Peng Ju, Fang Guan, Jizhou Duan, Nan Wang, Yimeng Zhang, Ke Li, Baorong Hou. Biofilm inhibition mechanism of BiVO4 inserted zinc matrix in marine isolated bacteria [J]. J. Mater. Sci. Technol., 2021, 75(0): 86-95. |
[11] | Mengyang Wang, Shichao Bi, Jianhui Pang, Zhongzheng Zhou, Di Qin, Honglei Wang, Xiaojie Cheng, Xiguang Chen. Precise quantification of the antibacterial activity of chitosan by NB medium neutralizer [J]. J. Mater. Sci. Technol., 2021, 70(0): 224-232. |
[12] | Yi Zou, Yanxia Zhang, Qian Yu, Hong Chen. Dual-function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously [J]. J. Mater. Sci. Technol., 2021, 70(0): 24-38. |
[13] | Xinrui Zhang, Xiaofang Liu, Chunguang Yang, Tong Xi, Jinlong Zhao, Lichu Liu, Ke Yang. New strategy to delay food spoilage: Application of new food contact material with antibacterial function [J]. J. Mater. Sci. Technol., 2021, 70(0): 59-66. |
[14] | Yongren Wu, Shun Chen, Yang Liu, Zhiwei Lu, Shaokun Song, Yang Zhang, Chuanxi Xiong, Lijie Dong. One-step preparation of porous aminated-silica nanoparticles and their antibacterial drug delivery applications [J]. J. Mater. Sci. Technol., 2020, 50(0): 139-146. |
[15] | Wang Guo, Wei Liu, Li Xu, Pei Feng, Yanru Zhang, Wenjing Yang, Cijun Shuai. Halloysite nanotubes loaded with nano silver for the sustained-release of antibacterial polymer nanocomposite scaffolds [J]. J. Mater. Sci. Technol., 2020, 46(0): 237-247. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||