J. Mater. Sci. Technol. ›› 2021, Vol. 70: 24-38.DOI: 10.1016/j.jmst.2020.07.028
• Invited Review • Previous Articles Next Articles
Yi Zou, Yanxia Zhanga,*(), Qian Yub,*(
), Hong Chenb
Received:
2020-07-04
Revised:
2020-07-24
Accepted:
2020-07-27
Published:
2021-04-20
Online:
2021-04-15
Contact:
Yanxia Zhang,Qian Yu
About author:
yuqian@suda.edu.cn (Q. Yu).Yi Zou, Yanxia Zhang, Qian Yu, Hong Chen. Dual-function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously[J]. J. Mater. Sci. Technol., 2021, 70: 24-38.
Substrate | Anti-adhesive component | Bactericidal component | Combination method | Bacterial strain | Ref. |
---|---|---|---|---|---|
Silicon | PHEAA | PMETA | Co-polymerization | E. coli, S. aureus | [ |
PDMS | PMPC | PMETA | Co-polymerization | S. aureus | [ |
TFC membrane | PSBMA | PMETA | Co-polymerization | E. coli | [ |
PDMS | PEG | AMP | Co-polymerization | E. coli, P. aeruginosa, S. aureus | [ |
PDMS | PEG | PHMB | Co-polymerization | E. coli, P. aeruginosa | [ |
PDMS | PEG | PHMG | Co-polymerization | P. aeruginosa, S. aureus, F. solani | [ |
Silicone rubber | PEG | Polycarbonate | Co-polymerization | MSSA, MRSA | [ |
Silicone rubber | PEG | Polycarbonate | Co-polymerization | E. coli, S. aureus | [ |
Silicon | LysAAm | QAC | Co-polymerization | S. aureus | [ |
SS | PMPC | PMETA | Co-immobilization | S. aureus, Pseudomonas sp. | [ |
Silicon | PSBMA | PQA | Co-immobilization | S. aureus | [ |
SS | PMPC | PLys | Co-immobilization | E. coli, S. epidermidis | [ |
PES | SBMA | AgNPs | Co-immobilization | E. coli, S. aureus | [ |
PES | PSBMA | PDMC | Co-immobilization | E. coli, S. aureus | [ |
Glass | PDMS | CuNPs | Co-deposition | E. coli, S. aureus | [ |
Glass | F-SiO2 | CuO | Co-deposition | E. coli | [ |
Aluminum | F-SiO2 | Lysozyme | Co-deposition | L. innocua, S. Typhimurium | [ |
P(3HB-4HB) | HA | PAMAM | LBL | E. coli | [ |
TFC membrane | PAA | TOB | LBL | E. coli, B. subtilis | [ |
Quartz | PEG | PDDA | LBL | E. coli, S. aureus | [ |
Titanium | HA | CS | LBL | E. coli, S. aureus | [ |
PET | HEP | CS | LBL | E. coli | [ |
Silicon, Glass | HEP | CS | LBL | S. aureus | [ |
PS | HEP | CS | LBL | E. coli | [ |
PCU | PSA | CS | Crosslinking | E. coli, S. aureus | [ |
SS | PHEAA | PMETA | Crosslinking | E. coli | [ |
SS | PEG | QAC | Crosslinking | E. coli, S. aureus | [ |
PU | PAA | PHMB | Crosslinking | E. coli, S. aureus | [ |
PES | PSBMA | AgNPs | Loading | E. coli, S. aureus | [ |
Silicon | Silicone oil | AgNPs | Loading | E. coli | [ |
SS | PC | AgNPs | Loading | E. coli, S. mutans | [ |
PES | PSBMA | AgNPs | Loading | E. coli, S. aureus | [ |
PES | VSA + META | GO | Loading | E. coli | [ |
PEI/PVDMA | Liquid oil | Triclosan | Loading | C. albicans | [ |
Table 1 Summary of dual-function antibacterial surfaces fabricated using different combination methods of anti-adhesive component and bactericidal component.
Substrate | Anti-adhesive component | Bactericidal component | Combination method | Bacterial strain | Ref. |
---|---|---|---|---|---|
Silicon | PHEAA | PMETA | Co-polymerization | E. coli, S. aureus | [ |
PDMS | PMPC | PMETA | Co-polymerization | S. aureus | [ |
TFC membrane | PSBMA | PMETA | Co-polymerization | E. coli | [ |
PDMS | PEG | AMP | Co-polymerization | E. coli, P. aeruginosa, S. aureus | [ |
PDMS | PEG | PHMB | Co-polymerization | E. coli, P. aeruginosa | [ |
PDMS | PEG | PHMG | Co-polymerization | P. aeruginosa, S. aureus, F. solani | [ |
Silicone rubber | PEG | Polycarbonate | Co-polymerization | MSSA, MRSA | [ |
Silicone rubber | PEG | Polycarbonate | Co-polymerization | E. coli, S. aureus | [ |
Silicon | LysAAm | QAC | Co-polymerization | S. aureus | [ |
SS | PMPC | PMETA | Co-immobilization | S. aureus, Pseudomonas sp. | [ |
Silicon | PSBMA | PQA | Co-immobilization | S. aureus | [ |
SS | PMPC | PLys | Co-immobilization | E. coli, S. epidermidis | [ |
PES | SBMA | AgNPs | Co-immobilization | E. coli, S. aureus | [ |
PES | PSBMA | PDMC | Co-immobilization | E. coli, S. aureus | [ |
Glass | PDMS | CuNPs | Co-deposition | E. coli, S. aureus | [ |
Glass | F-SiO2 | CuO | Co-deposition | E. coli | [ |
Aluminum | F-SiO2 | Lysozyme | Co-deposition | L. innocua, S. Typhimurium | [ |
P(3HB-4HB) | HA | PAMAM | LBL | E. coli | [ |
TFC membrane | PAA | TOB | LBL | E. coli, B. subtilis | [ |
Quartz | PEG | PDDA | LBL | E. coli, S. aureus | [ |
Titanium | HA | CS | LBL | E. coli, S. aureus | [ |
PET | HEP | CS | LBL | E. coli | [ |
Silicon, Glass | HEP | CS | LBL | S. aureus | [ |
PS | HEP | CS | LBL | E. coli | [ |
PCU | PSA | CS | Crosslinking | E. coli, S. aureus | [ |
SS | PHEAA | PMETA | Crosslinking | E. coli | [ |
SS | PEG | QAC | Crosslinking | E. coli, S. aureus | [ |
PU | PAA | PHMB | Crosslinking | E. coli, S. aureus | [ |
PES | PSBMA | AgNPs | Loading | E. coli, S. aureus | [ |
Silicon | Silicone oil | AgNPs | Loading | E. coli | [ |
SS | PC | AgNPs | Loading | E. coli, S. mutans | [ |
PES | PSBMA | AgNPs | Loading | E. coli, S. aureus | [ |
PES | VSA + META | GO | Loading | E. coli | [ |
PEI/PVDMA | Liquid oil | Triclosan | Loading | C. albicans | [ |
Fig. 1. Schematic illustration of main strategies for fabrication of dual-function antibacterial surfaces with both anti-adhesive and bactericidal properties.
Fig. 2. Schematic illustration of fabrication of dual-function antibacterial surfaces based on (a) mixed PHEAA/PMETA brushes [63], (b) P(DMAEMA+-r-MPC) random copolymer brushes [64], and (c) P(SBMA-b-META) diblock copolymer brushes [65] via surface-initiated polymerization.
Fig. 3. Schematic illustration of (a) synthesis of “dual-function macromonomer” containing PEG and AMP and (b) preparation process of dual-functional bottlebrush coating on a PDMS substrate via plasma/UV-induced polymerization. Reproduced with permission from Ref. [66], copyright 2017, Elsevier.
Fig. 4. Schematic illustration of fabrication of dual-function antibacterial surfaces via co-immobilized two functional polymer chains using (a) orthogonal “click” reactions [72], (b) DA [73] or (c) TA [74] as anchor group.
Fig. 5. Schematic illustration of the preparation of a dual-function antibacterial surface based on the co-immobilization of AgNPs and zwitterionic polymer using TA/Fe as a functional layer. Reproduced with permission from Ref. [76], copyright 2019, American Chemical Society.
Fig. 6. Schematic illustration of fabrication of superhydrophobic dual-function antibacterial surfaces by co-deposition of fluorinated SiO2 nanoparticles and (a) CuO nanoparticles or (b) lysozyme. Reproduced with permission from (a) Ref. [80], copyright 2018, American Chemical Society and (b) Ref. [81], copyright 2020, American Chemical Society.
Fig. 7. Schematic illustration of deposition a multilayered film composed of TOB and PAA via LBL assembly. Reproduced with permission from Ref. [83], copyright 2017, Elsevier.
Fig. 8. Schematic illustration of preparation of a crosslinked microgel layer of CE and PSA on the electrospun PCU membrane. Reproduced with permission from Ref. [89], copyright 2018, Elsevier.
Fig. 9. Schematic illustration of synthetic process of dual-functional surface with triplex-crosslinked network of covalent bonds, hydrogen bonds, and ionic interactions. Reproduced with permission from Ref. [91], copyright 2020, Elsevier.
Fig. 10. Schematic illustration of the surface modification process of grafting hydrogel thin layer onto a PES membrane and loading AgNPs in it. Reproduced with permission from Ref. [93], copyright 2017, American Chemical Society.
Fig. 11. Schematic illustration of fabrication process of SLIPS loaded with AgNPs. Step 1: spin coating of PS/PPFPA blends; Step 2: selective removal of PS; Step3: functionalization of DA and PDMS; Step 4: reduction of Ag ions to AgNPs; and Step 5: infusion of silicone oil. Reproduced with permission from Ref. [94], copyright 2019, American Chemical Society.
Fig. 12. Schematic illustration of the dual-function antibacterial surface with switchable properties based on (a) bacteria-activatable MLT that exhibits zwitterionic structure under physiological conditions and exposes the bactericidal guanidinium and primary amine groups in bacterially induced acidic environments and (b) the existence of PEG to exhibit biocompatible property and fracture of Schiff Base bond in bacterially induced acidic environments to expose bactericidal layer. Reproduced with permission from (a) Ref. [142], copyright 2019, The Royal Society of Chemistry and (b) Ref. [147], copyright 2020, The Royal Society of Chemistry.
Fig. 13. Schematic illustration of bacterial hyaluronidase and pH dual-responsive surface with switchable anti-adhesive and bactericidal properties. Reproduced with permission from Ref. [149], copyright 2018, The Royal Society of Chemistry.
Fig. 14. Schematic illustration of experimental concept for fabrication of dual-functional surface with electric-responsive property by doping with polypyrrole and incorporating CV. Reproduced with permission from Ref. [152], copyright 2019, Wiley-VCH.
Fig. 15. Schematic illustration of three kinds of smart antibacterial surface with “kill-release” strategy: (i) “K + R”-type (ii) “K→R”-type (iii) “K+(R)”-type. Reproduced with permission from Ref. [170], copyright 2019, American Chemical Society.
[1] |
L. Hall-Stoodley, J.W. Costerton, P. Stoodley, Nat. Rev. Microbiol., 2(2004), pp. 95-108.
DOI URL |
[2] |
Y. Li, D. Xu, C. Chen, X. Li, R. Jia, D. Zhang, W. Sand, F. Wang, T. Gu, J. Mater. Sci. Technol., 34(2018), pp. 1713-1718.
DOI URL |
[3] |
J.L. Harding, M.M. Reynolds, Trends Biotechnol., 32(2014), pp. 140-146.
DOI URL |
[4] |
D. Liu, R. Jia, D. Xu, H. Yang, Y. Zhao, M.S. Khan, S. Huang, J. Wen, K. Yang, T. Gu, J. Mater. Sci. Technol., 35(2019), pp. 2494-2502.
DOI URL |
[5] |
H. Zhao, Y. Sun, L. Yin, Z. Yuan, Y. Lan, D. Xu, C. Yang, K. Yang, J. Mater. Sci. Technol., 66(2021), pp. 112-120.
DOI URL |
[6] | T.P. Van Boeckel, J. Pires, R. Silvester, C. Zhao, J. Song, N.G. Criscuolo, M. Gilbert, S. Bonhoeffer, R. Laxminarayan, Science, 365(2019), pp. 1-5. |
[7] |
B. Song, E. Zhang, X. Han, H. Zhu, Y. Shi, Z. Cao, ACS Appl. Mater. Interfaces, 12(2020), pp. 21330-21341.
DOI URL |
[8] |
H. Koo, R.N. Allan, R.P. Howlin, P. Stoodley, L. Hall-Stoodley, Nat. Rev. Microbiol., 15(2017), pp. 740-755.
DOI URL |
[9] |
D.N. Huang, J. Wang, K.F. Ren, J. Ji, Biomater. Sci., 8(2020), pp. 4052-4066.
DOI URL |
[10] |
Q. Yu, Y. Zhang, H. Wang, J. Brash, H. Chen, Acta Biomater., 7(2011), pp. 1550-1557.
DOI URL |
[11] |
L. Rizzello, P.P. Pompa, Chem. Soc. Rev., 43(2014), pp. 1501-1518.
DOI URL |
[12] |
Q. Yu, Z. Wu, H. Chen, Acta Biomater., 16(2015), pp. 1-13.
DOI URL |
[13] | Z.K. Zander, M.L. Becker, ACS Macro Lett .,7(2017), pp. 16-25 |
[14] |
M. Ghasemlou, F. Daver, E.P. Ivanova, J.W. Rhim, B. Adhikari, ACS Appl. Mater. Interfaces, 11(2019), pp. 22897-22914.
DOI URL |
[15] | D. șen Karaman, U.K. Ercan, E. Bakay, N. Topalo$\check{g}$lu, J.M. Rosenholm, Adv. Funct. Mater., 30(2020), Article 1908783. |
[16] | X. Ding, S. Duan, X. Ding, R. Liu, F.J. Xu, Adv. Funct. Mater., 28(2018), Article 1802140. |
[17] |
H.C. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, S.A. Rice, S. Kjelleberg, Nat. Rev. Microbiol., 14(2016), pp. 563-575.
DOI URL |
[18] |
L. Karygianni, Z. Ren, H. Koo, T. Thurnheer, Trends Microbiol., 28(2020), pp. 668-681.
DOI URL |
[19] |
A.K. Leonardi, C.K. Ober, Annu. Rev. Chem. Biomol. Eng., 10(2019), pp. 241-264.
DOI URL |
[20] |
M. He, K. Gao, L. Zhou, Z. Jiao, M. Wu, J. Cao, X. You, Z. Cai, Y. Su, Z. Jiang, Acta Biomater., 40(2016), pp. 142-152.
DOI URL |
[21] |
A. Guinaudeau, O. Coutelier, A. Sandeau, S. Mazières, H.D. Nguyen Thi, V. Le Drogo, D.J. Wilson, M. Destarac, Macromolecules, 47(2013), pp. 41-50.
DOI URL |
[22] |
S. Bauer, M.P. Arpa-Sancet, J.A. Finlay, M.E. Callow, J.A. Callow, A. Rosenhahn, Langmuir, 29(2013), pp. 4039-4047.
DOI URL |
[23] |
S. Del Hoyo-Gallego, L. Perez-Alvarez, F. Gomez-Galvan, E. Lizundia, I. Kuritka, V. Sedlarik, J.M. Laza, J.L. Vila-Vilela, Carbohydr. Polym., 143(2016), pp. 35-43.
DOI URL |
[24] |
D. Zhang, Q. Chen, W. Zhang, H. Liu, J. Wan, Y. Qian, B. Li, S. Tang, Y. Liu, S. Chen, R. Liu, Angew. Chem., Int. Ed., 59(2020), pp. 9586-9593.
DOI URL |
[25] | P. Zhang, L. Lin, D. Zang, X. Guo, M. Liu, Small, 13(2017), Article 1503334. |
[26] |
Q. Xie, J. Pan, C. Ma, G. Zhang, Soft Matter, 15(2019), pp. 1087-1107.
DOI URL |
[27] |
X. Zhao, W. Chen, Y. Su, W. Zhu, J. Peng, Z. Jiang, L. Kong, Y. Li, J. Liu, J. Membr. Sci., 441(2013), pp. 93-101.
DOI URL |
[28] |
R. Jafari, R. Menini, M. Farzaneh, Appl. Surf. Sci., 257(2010), pp. 1540-1543.
DOI URL |
[29] |
S. Tavakoli, S. Nemati, M. Kharaziha, S. Akbari-Alavijeh, Colloid Interface Sci. Commun., 28(2019), pp. 20-28.
DOI URL |
[30] |
F. Hizal, N. Rungraeng, J. Lee, S. Jun, H.J. Busscher, H.C. van der Mei, C.H. Choi, ACS Appl. Mater. Interfaces, 9(2017), pp. 12118-12129.
DOI URL |
[31] |
A. Kugel, S. Stafslien, B.J. Chisholm, Prog. Org. Coat., 72(2011), pp. 222-252.
DOI URL |
[32] |
W. Guo, W. Liu, L. Xu, P. Feng, Y. Zhang, W. Yang, C. Shuai, J. Mater. Sci. Technol., 46(2020), pp. 237-247.
DOI URL |
[33] |
H. Liu, R. Liu, I. Ullah, S. Zhang, Z. Sun, L. Ren, K. Yang, J. Mater. Sci. Technol., 48(2020), pp. 130-139.
DOI URL |
[34] |
E. Zhou, D. Qiao, Y. Yang, D. Xu, Y. Lu, J. Wang, J.A. Smith, H. Li, H. Zhao, P.K. Liaw, F. Wang, J. Mater. Sci. Technol., 46(2020), pp. 201-210.
DOI URL |
[35] |
X. Wang, H. Shi, H. Tang, H. Yu, Q. Yan, H. Yang, X. Zhang, S. Luan, J. Mater. Sci. Technol., 59(2020), pp. 14-25.
DOI URL |
[36] | S. Menon, S.D. K.S, H. Agarwal, V.K. Shanmugam, Colloid Interface Sci.Commun., 29(2019), pp. 1-8. |
[37] |
I. Sengupta, P. Bhattacharya, M. Talukdar, S. Neogi, S.K. Pal, S. Chakraborty, Colloid Interface Sci. Commun., 28(2019), pp. 60-68.
DOI URL |
[38] |
Y. Xiang, Q. Zhou, Z. Li, Z. Cui, X. Liu, Y. Liang, S. Zhu, Y. Zheng, K.W.K. Yeung, S. Wu, J. Mater. Sci. Technol., 57(2020), pp. 1-11.
DOI URL |
[39] |
Y. Qu, T. Wei, J. Zhao, S. Jiang, P. Yang, Q. Yu, H. Chen, J. Mater. Chem. B, 6(2018), pp. 3946-3955.
DOI URL |
[40] |
Y. Wang, T. Wei, Y. Qu, Y. Zhou, Y. Zheng, C. Huang, Y. Zhang, Q. Yu, H. Chen, ACS Appl. Mater. Interfaces, 12(2020), pp. 21283-21291.
DOI URL |
[41] | K. Xiong, J. Li, L. Tan, Z. Cui, Z. Li, S. Wu, Y. Liang, S. Zhu, X. Liu, Colloid Interface Sci. Commun., 33(2019), Article 100201. |
[42] |
D. Mitra, E.T. Kang, K.G. Neoh, ACS Appl. Mater. Interfaces, 12(2020), pp. 21159-21182.
DOI URL |
[43] |
H. Jamaati, E. Mortaz, Z. Pajouhi, G. Folkerts, M. Movassaghi, M. Moloudizargari, I.M. Adcock, J. Garssen, Front. Microbiol., 8(2017), p. 2008.
DOI URL |
[44] |
D. Alves, M. Olivia Pereira, Biofouling, 30(2014), pp. 483-499.
DOI URL |
[45] |
K. Kalantari, A.M. Afifi, H. Jahangirian, T.J. Webster, Carbohydr. Polym., 207(2019), pp. 588-600.
DOI URL |
[46] |
Y. Jiao, L.N. Niu, S. Ma, J. Li, F.R. Tay, J.H. Chen, Prog. Polym. Sci., 71(2017), pp. 53-90.
DOI URL |
[47] |
H. Ren, Y. Du, Y. Su, Y. Guo, Z. Zhu, A. Dong, Colloid Interface Sci. Commun., 24(2018), pp. 24-34.
DOI URL |
[48] | Y. Qian, D. Zhang, Y. Wu, Q. Chen, R. Liu, Acta Polym. Sin., 10(2016), pp. 1300-1311. |
[49] | B. Thallinger, E.N. Prasetyo, G.S. Nyanhongo, G.M. Guebitz, Biotechnol. J., 8(2013), pp. 97-109. |
[50] |
A. Dong, Y.J. Wang, Y. Gao, T. Gao, G. Gao, Chem. Rev., 117(2017), pp. 4806-4862.
DOI URL |
[51] |
S. Hernando-Amado, T.M. Coque, F. Baquero, J.L. Martinez, Nat. Microbiol., 4(2019), pp. 1432-1442.
DOI URL |
[52] |
Y. Wang, Y. Jin, W. Chen, J. Wang, H. Chen, L. Sun, X. Li, J. Ji, Q. Yu, L. Shen, B. Wang, Chem. Eng. J., 358(2019), pp. 74-90.
DOI URL |
[53] |
J.W. Xu, K. Yao, Z.K. Xu, Nanoscale, 11(2019), pp. 8680-8691.
DOI URL |
[54] |
Y. Feng, L. Liu, J. Zhang, H. Aslan, M. Dong, J. Mater. Chem. B, 5(2017), pp. 8631-8652.
DOI URL |
[55] |
J. Wu, Y. Qu, Q. Yu, H. Chen, Mater. Chem. Front., 2(2018), pp. 2175-2190.
DOI URL |
[56] |
O. Khantamat, C.H. Li, F. Yu, A.C. Jamison, W.C. Shih, C. Cai, T.R. Lee, ACS Appl. Mater. Interfaces, 7(2015), pp. 3981-3993.
DOI URL |
[57] |
L. Hui, J.T. Auletta, Z. Huang, X. Chen, F. Xia, S. Yang, H. Liu, L. Yang, ACS Appl. Mater. Interfaces, 7(2015), pp. 10511-10517.
DOI URL |
[58] | W. Lei, K. Ren, T. Chen, X. Chen, B. Li, H. Chang, J. Ji, Adv. Mater. Interfaces, 3(2016), Article 1600767. |
[59] |
Y.K. Kim, E.B. Kang, S.M. Kim, C.P. Park, I. In, S.Y. Park, ACS Appl. Mater. Interfaces, 9(2017), pp. 3192-3200.
DOI URL |
[60] | Y. Zou, Y. Zhang, Q. Yu, H. Chen, Biomater. Sci. (2020), 10.1039/d0bm00617c. |
[61] | Y.F. Cheng, Y.H. Mei, G. Sathishkumar, Z.S. Lu, C.M. Li, F. Wang, Q.Y. Xia, L.Q. Xu, Colloid Interface Sci. Commun., 35(2020), Article 100241. |
[62] |
J. Wang, Y. Chen, J. An, K. Xu, T. Chen, P. Muller-Buschbaum, Q. Zhong, ACS Appl. Mater. Interfaces, 9(2017), pp. 13647-13656.
DOI URL |
[63] | Y. Fu, Y. Yang, S. Xiao, L. Zhang, L. Huang, F. Chen, P. Fan, M. Zhong, J. Tan, J. Yang, Prog. Org. Coat., 130(2019), pp. 75-82. |
[64] |
B. Wang, Z. Ye, Y. Tang, Y. Han, Q. Lin, H. Liu, H. Chen, K. Nan, Int. J. Nanomed., 12(2017), pp. 111-125.
DOI URL |
[65] |
G. Ye, J. Lee, F. Perreault, M. Elimelech, ACS Appl. Mater. Interfaces, 7(2015), pp. 23069-23079.
DOI URL |
[66] |
Q. Gao, M. Yu, Y. Su, M. Xie, X. Zhao, P. Li, P.X. Ma, Acta Biomater., 51(2017), pp. 112-124.
DOI URL |
[67] |
Z. Zhi, Y. Su, Y. Xi, L. Tian, M. Xu, Q. Wang, S. Pandidan, S. Padidan, P. Li, W. Huang, ACS Appl. Mater. Interfaces, 9(2017), pp. 10383-10397.
DOI URL |
[68] | Y. Su, Z. Zhi, Q. Gao, M. Xie, M. Yu, B. Lei, P. Li, P.X. Ma, Adv. Healthcare Mater., 6 (2017), Article 1601173. |
[69] |
X. Ding, C. Yang, T.P. Lim, L.Y. Hsu, A.C. Engler, J.L. Hedrick, Y.Y. Yang, Biomaterials, 33(2012), pp. 6593-6603.
DOI URL |
[70] |
Z.X. Voo, M. Khan, Q. Xu, K. Narayanan, B.W.J. Ng, R. Bte Ahmad, J.L. Hedrick, Y.Y. Yang, Polym. Chem., 7(2016), pp. 656-668.
DOI URL |
[71] |
J. Lv, J. Jin, J. Chen, B. Cai, W. Jiang, ACS Appl. Mater. Interfaces, 11(2019), pp. 25556-25568.
DOI URL |
[72] |
G. Xu, P. Liu, D. Pranantyo, L. Xu, K.G. Neoh, E.T. Kang, Ind. Eng. Chem. Res., 56(2017), pp. 14479-14488.
DOI URL |
[73] |
Y. He, X. Wan, K. Xiao, W. Lin, J. Li, Z. Li, F. Luo, H. Tan, J. Li, Q. Fu, Biomater. Sci., 7(2019), pp. 5369-5382.
DOI URL |
[74] | G. Xu, P. Liu, D. Pranantyo, K.G. Neoh, E.T. Kang, S.L.M. Teo, ACS Sustainable Chem.Eng., 7(2018), pp. 1786-1795. |
[75] | G. Xu, K.G. Neoh, E.T. Kang, S.L.M. Teo, ACS Sustainable Chem.Eng., 8(2020), pp. 2586-2595. |
[76] |
Y. Xie, S. Chen, X. Zhang, Z. Shi, Z. Wei, J. Bao, W. Zhao, C. Zhao, Ind. Eng. Chem. Res., 58(2019), pp. 11689-11697.
DOI URL |
[77] |
Y. Xie, C. Tang, Z. Wang, Y. Xu, W. Zhao, S. Sun, C. Zhao, J. Mater. Chem. B, 5(2017), pp. 7186-7193.
DOI URL |
[78] | M. Shao, R. Wang, W. Zhao, J. Li, C. Zhao, Macromol. Mater. Eng., 303(2018), Article 1700378. |
[79] |
E. Ozkan, C.C. Crick, A. Taylor, E. Allan, I.P. Parkin, Chem. Sci., 7(2016), pp. 5126-5131.
DOI URL |
[80] |
T. Ren, M. Yang, K. Wang, Y. Zhang, J. He, ACS Appl. Mater. Interfaces, 10(2018), pp. 25717-25725.
DOI URL |
[81] |
S. Liu, J. Zheng, L. Hao, Y. Yegin, M. Bae, B. Ulugun, T.M. Taylor, E.A. Scholar, L. Cisneros-Zevallos, J.K. Oh, M. Akbulut, ACS Appl. Mater. Interfaces, 12(2020), pp. 21311-21321.
DOI URL |
[82] |
J. Zhan, L. Wang, S. Liu, J. Chen, L. Ren, Y. Wang, ACS Appl. Mater. Interfaces, 7(2015), pp. 13876-13881.
DOI URL |
[83] |
Y. Wang, Z. Wang, X. Han, J. Wang, S. Wang, J. Membr. Sci., 539(2017), pp. 403-411.
DOI URL |
[84] | P. Yuan, X. Qiu, X. Wang, R. Tian, L. Wang, Y. Bai, S. Liu, X. Chen, Adv. Healthcare Mater., 8 (2019), Article e1801423. |
[85] | Y. Yu, Q. Ran, X. Shen, H. Zheng, K. Cai, Colloids Surf. B, 185(2020), Article 110592. |
[86] |
J. Fu, J. Ji, W. Yuan, J. Shen, Biomaterials, 26(2005), pp. 6684-6692.
DOI URL |
[87] |
B.L. Wang, K.F. Ren, H. Chang, J.L. Wang, J. Ji, ACS Appl. Mater. Interfaces, 5(2013), pp. 4136-4143.
DOI URL |
[88] |
H.D. Follmann, A.F. Martins, A.P. Gerola, T.A. Burgo, C.V. Nakamura, A.F. Rubira, E.C. Muniz, Biomacromolecules, 13(2012), pp. 3711-3722.
DOI URL |
[89] |
Z. Li, W. Hu, Y. Zhao, L. Ren, X. Yuan, Colloids Surf. B, 169(2018), pp. 151-159.
DOI URL |
[90] |
W.J. Yang, X. Tao, T. Zhao, L. Weng, E.T. Kang, L. Wang, Polym. Chem., 6(2015), pp. 7027-7035.
DOI URL |
[91] | C. Wang, T. Wang, P. Hu, T. Shen, J. Xu, C. Ding, J. Fu, Chem. Eng. J., 389(2020), Article 123469. |
[92] |
W. Li, H. Zhang, X. Li, H. Yu, C. Che, S. Luan, Y. Ren, S. Li, P. Liu, X. Yu, X. Li, ACS Appl. Mater. Interfaces, 12(2020), pp. 7617-7630.
DOI URL |
[93] |
M. He, Q. Wang, R. Wang, Y. Xie, W. Zhao, C. Zhao, ACS Appl. Mater. Interfaces, 9(2017), pp. 15962-15974.
DOI URL |
[94] |
J. Lee, J. Yoo, J. Kim, Y. Jang, K. Shin, E. Ha, S. Ryu, B.G. Kim, S. Wooh, K. Char, ACS Appl. Mater. Interfaces, 11(2019), pp. 6550-6560.
DOI URL |
[95] |
B.S. Lee, Y.C. Lin, W.C. Hsu, C.H. Hou, J.J. Shyue, S.Y. Hsiao, P.J. Wu, Y.T. Lee, S.C. Luo, ACS Appl. Bio Mater., 3(2019), pp. 486-494.
DOI URL |
[96] |
M. He, Q. Wang, W. Zhao, C. Zhao, J. Mater. Chem. B, 6(2018), pp. 3904-3913.
DOI URL |
[97] |
W. Zhang, W. Cheng, E. Ziemann, A. Be’er, X. Lu, M. Elimelech, R. Bernstein, J. Membr. Sci., 565(2018), pp. 293-302.
DOI URL |
[98] |
U. Manna, N. Raman, M.A. Welsh, Y.M. Zayas-Gonzalez, H.E. Blackwell, S.P. Palecek, D.M. Lynn, Adv. Funct. Mater., 26(2016), pp. 3599-3611.
DOI URL |
[99] |
H. Jiang, F.J. Xu, Chem. Soc. Rev., 42(2013), pp. 3394-3426.
DOI URL |
[100] |
M. Krishnamoorthy, S. Hakobyan, M. Ramstedt, J.E. Gautrot, Chem. Rev., 114(2014), pp. 10976-11026.
DOI URL |
[101] |
W. Zhan, T. Wei, Q. Yu, H. Chen, ACS Appl. Mater. Interfaces, 10(2018), pp. 36585-36601.
DOI URL |
[102] |
K.D. Park, Y.S. Kim, D.K. Han, Y.H. Kim, E.H.B. Lee, H. Suh, K.S. Choi, Biomaterials, 19(1998), pp. 851-859.
DOI URL |
[103] |
F. Bretagnol, H. Rauscher, M. Hasiwa, O. Kylian, G. Ceccone, L. Hazell, A.J. Paul, O. Lefranc, F. Rossi, Acta Biomater., 4(2008), pp. 1745-1751.
DOI URL |
[104] |
N.O. Hubner, A. Kramer, Skin Pharmacol. Physiol., 23(2010), pp. 17-27.
DOI URL |
[105] |
R. Barbey, L. Lavanant, D. Paripovic, N. Schuwer, C. Sugnaux, S. Tugulu, H.A. Klok, Chem. Rev., 109(2009), pp. 5437-5527.
DOI URL |
[106] |
H. Ejima, J.J. Richardson, F. Caruso, Nano Today, 12(2017), pp. 136-148.
DOI URL |
[107] |
W.Z. Qiu, H.C. Yang, Z.K. Xu, Adv. Colloid Interface Sci., 256(2018), pp. 111-125.
DOI URL |
[108] |
H. Ejima, J.J. Richardson, K. Liang, J.P. Best, M.P. van Koeverden, G.K. Such, J. Cui, F. Caruso, Science, 341(2013), pp. 154-157.
DOI URL |
[109] |
G. Yun, J.J. Richardson, M. Biviano, F. Caruso, ACS Appl. Mater. Interfaces, 11(2019), pp. 6404-6410.
DOI URL |
[110] |
Y.Q. Zhao, Y. Sun, Y. Zhang, X. Ding, N. Zhao, B. Yu, H. Zhao, S. Duan, F.J. Xu, ACS Nano, 14(2020), pp. 2265-2275.
DOI URL |
[111] |
Z. Li, Z. Guo, Nanoscale, 11(2019), pp. 22636-22663.
DOI URL |
[112] |
S. Chen, F. Tang, L. Tang, L. Li, ACS Appl. Mater. Interfaces, 9(2017), pp. 20895-20903.
DOI URL |
[113] |
J. Xi, G. Wei, L. An, Z. Xu, Z. Xu, L. Fan, L. Gao, Nano Lett., 19(2019), pp. 7645-7654.
DOI URL |
[114] |
F. Kloss, S. Pidot, H. Goerls, T. Friedrich, C. Hertweck, Angew. Chem., Int. Ed., 52(2013), pp. 10745-10748.
DOI URL |
[115] |
Z.R. Li, J. Li, W. Cai, J.Y.H. Lai, S.M.K.McKinnie, W.P. Zhang, B.S. Moore, W. Zhang, P.Y. Qian, Nat. Chem., 11(2019), pp. 880-889.
DOI URL |
[116] | J.J. Richardson, M. Bjornmalm, F. Caruso, Science, 348(2015), Article aaa2491. |
[117] |
L. Peng, L. Chang, M. Si, J. Lin, Y. Wei, S. Wang, H. Liu, B. Han, L. Jiang, ACS Appl. Mater. Interfaces, 12(2020), pp. 9718-9725.
DOI URL |
[118] |
R. Wang, K.G. Neoh, E.T. Kang, J. Colloid Interface Sci., 438(2015), pp. 138-148.
DOI URL |
[119] |
N. Bhattarai, J. Gunn, M. Zhang, Adv. Drug Delivery Rev., 62(2010), pp. 83-99.
DOI URL |
[120] | C.H. Li, J.L. Zuo, Adv. Mater. (2019), Article e1903762. |
[121] |
R. Wang, X. Song, T. Xiang, Q. Liu, B. Su, W. Zhao, C. Zhao, Carbohydr. Polym., 168(2017), pp. 310-319.
DOI URL |
[122] |
C. Zhao, X. Li, L. Li, G. Cheng, X. Gong, J. Zheng, Langmuir, 29(2013), pp. 1517-1524.
DOI URL |
[123] |
R. Dimatteo, N.J. Darling, T. Segura, Adv. Drug Delivery Rev., 127(2018), pp. 167-184.
DOI URL |
[124] |
C.S. Ware, T. Smith-Palmer, S. Peppou-Chapman, L.R.J. Scarratt, E.M. Humphries, D. Balzer, C. Neto, ACS Appl. Mater. Interfaces, 10(2018), pp. 4173-4182.
DOI URL |
[125] |
X. Zhou, Y.Y. Lee, K.S.L. Chong, C. He, J. Mater. Chem. B, 6(2018), pp. 440-448.
DOI URL |
[126] |
T.S. Wong, S.H. Kang, S.K. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal, J. Aizenberg, Nature, 477(2011), pp. 443-447.
DOI URL |
[127] |
G.H. Zhu, S.H. Cho, H. Zhang, M. Zhao, N.S. Zacharia, Langmuir, 34(2018), pp. 4722-4731.
DOI URL |
[128] |
Y. Lu, Z. Yue, W. Wang, Z. Cao, Front. Chem. Sci. Eng., 9(2015), pp. 324-335.
DOI URL |
[129] |
W. Hartleb, J.S. Saar, P. Zou, K. Lienkamp, Macromol. Chem. Phys., 217(2016), pp. 225-231.
DOI URL |
[130] |
L. Mi, M.T. Bernards, G. Cheng, Q. Yu, S. Jiang, Biomaterials, 31(2010), pp. 2919-2925.
DOI URL |
[131] |
Q. Yu, J. Cho, P. Shivapooja, L.K. Ista, G.P. Lopez, ACS Appl. Mater. Interfaces, 5(2013), pp. 9295-9304.
DOI URL |
[132] |
Q. Yu, L.K. Ista, G.P. Lopez, Nanoscale, 6(2014), pp. 4750-4757.
DOI URL |
[133] | H. Chen, J. Yang, S. Xiao, R. Hu, S.M. Bhaway, B.D. Vogt, M. Zhang, Q. Chen, J. Ma, Y. Chang, L. Li, J. Zheng Acta Biomater., 40(2016), pp. 62-69. |
[134] |
H. Yang, G. Li, J.W. Stansbury, X. Zhu, X. Wang, J. Nie, ACS Appl. Mater. Interfaces, 8(2016), pp. 28047-28054.
DOI URL |
[135] |
S. Yan, H. Shi, L. Song, X. Wang, L. Liu, S. Luan, Y. Yang, J. Yin, ACS Appl. Mater. Interfaces, 8(2016), pp. 24471-24481.
DOI URL |
[136] | J. Wu, D. Zhang, Y. Wang, S. Mao, S. Xiao, F. Chen, P. Fan, M. Zhong, J. Tan, J. Yang, Langmuir, 35(2019), pp. 8285-8293 |
[137] |
L. Liu, H. Shi, H. Yu, S. Yan, S. Luan, Biomater. Sci., 8(2020), pp. 4095-4108.
DOI URL |
[138] |
S. Dai, P. Ravi, K.C. Tam, Soft Matter, 4(2008), pp. 435-449.
DOI URL |
[139] |
G. Cheng, H. Xue, Z. Zhang, S. Chen, S. Jiang, Angew. Chem., Int. Ed., 47(2008), pp. 8831-8834.
DOI URL |
[140] |
Z. Cao, L. Mi, J. Mendiola, J.R. Ella-Menye, L.Zhang, H. Xue, S. Jiang, Angew. Chem., Int. Ed., 51(2012), pp. 2602-2605.
DOI URL |
[141] |
W.N. Yu, D.H.N. Manik, C.J. Huang, L.K. Chau, Chem. Commun., 53(2017), pp. 9143-9146.
DOI URL |
[142] | J. Zhang, R. Zhou, H. Wang, X. Jiang, H. Wang, S. Yan, J. Yin, S. Luan, Appl. Surf. Sci., 497(2019), Article 143480. |
[143] |
J. Xu, Y. Liu, S.H. Hsu, Molecules, 24(2019), p. 3005.
DOI URL |
[144] |
H. Qian, I. Aprahamian, Chem. Commun., 51(2015), pp. 11158-11161.
DOI URL |
[145] |
M. Bellare, V.K. Kadambar, P. Bollella, E. Katz, A. Melman, Chem. Commun., 55(2019), pp. 7856-7859.
DOI URL |
[146] |
L. Liu, C. Kong, M. Huo, C. Liu, L. Peng, T. Zhao, Y. Wei, F. Qian, J. Yuan, Chem. Commun., 54(2018), pp. 9190-9193.
DOI URL |
[147] |
Y. Zhang, X. Zhang, Y.Q. Zhao, X.Y. Zhang, X. Ding, X. Ding, B. Yu, S. Duan, F.J. Xu, Biomater. Sci., 8(2020), pp. 997-1006.
DOI URL |
[148] | V.V. Komnatnyy, W.C. Chiang, T. Tolker-Nielsen, M. Givskov, T.E. Nielsen, Angew. Chem., Int. Ed., 53(2014), pp. 439-441. |
[149] |
X. Wang, L. Song, J. Zhao, R. Zhou, S. Luan, Y. Huang, J. Yin, A. Khan, J. Mater. Chem. B, 6(2018), pp. 7710-7718.
DOI URL |
[150] |
T.W. Chuo, T.C. Wei, Y. Chang, Y.L. Liu, ACS Appl. Mater. Interfaces, 5(2013), pp. 9918-9925.
DOI URL |
[151] |
J.S. Im, B. Bai, Y.S. Lee, Biomaterials, 31(2010), pp. 1414-1419.
DOI URL |
[152] | L. Děkanovsky, R. Elashnikov, M. Kubiková, B. Vokatá, V. $\check{S}$vor$\check{c}$ík, O. Lyutakov, Adv. Funct. Mater., 29(2019), Article 1901880. |
[153] | L. Cao, Y. Qu, C. Hu, T. Wei, W. Zhan, Q. Yu, H. Chen, Adv. Mater. Interfaces, 3 (2016), Article 1600600. |
[154] |
Y. Zhou, Y. Zheng, T. Wei, Y. Qu, Y. Wang, W. Zhan, Y. Zhang, G. Pan, D. Li, Q. Yu, H. Chen, ACS Appl. Mater. Interfaces, 12(2020), pp. 5447-5455.
DOI URL |
[155] |
Z.Q. Shi, Y.T. Cai, J. Deng, W.F. Zhao, C.S. Zhao, ACS Appl. Mater. Interfaces, 8(2016), pp. 23523-23532.
DOI URL |
[156] |
B. Wang, Z. Ye, Q. Xu, H. Liu, Q. Lin, H. Chen, K. Nan, Biomater. Sci., 4(2016), pp. 1731-1741.
DOI URL |
[157] |
B. Wang, Q. Xu, Z. Ye, H. Liu, Q. Lin, K. Nan, Y. Li, Y. Wang, L. Qi, H. Chen, ACS Appl. Mater. Interfaces, 8(2016), pp. 27207-27217.
DOI URL |
[158] |
Q. Yu, W. Ge, A. Atewologun, G.P. Lopez, A.D. Stiff-Roberts, J. Mater. Chem. B, 2(2014), pp. 4371-4378.
DOI URL |
[159] |
T. Wei, Q. Yu, W. Zhan, H. Chen, Adv. Healthcare Mater., 5(2016), pp. 449-456.
DOI URL |
[160] |
S. Yan, S. Luan, H. Shi, X. Xu, J. Zhang, S. Yuan, Y. Yang, J. Yin, Biomacromolecules, 17(2016), pp. 1696-1704.
DOI URL |
[161] |
T. Wei, W. Zhan, Q. Yu, H. Chen, ACS Appl. Mater. Interfaces, 9(2017), pp. 25767-25774.
DOI URL |
[162] |
X. Wang, S. Yuan, Y. Guo, D. Shi, T. Jiang, S. Yan, J. Ma, H. Shi, S. Luan, J. Yin, Colloids Surf. B, 136(2015), pp. 7-13.
DOI URL |
[163] |
S. Yuan, Y. Li, S. Luan, H. Shi, S. Yan, J. Yin, J. Mater. Chem. B, 4(2016), pp. 1081-1089.
DOI URL |
[164] |
B. Cao, C.J. Lee, Z. Zeng, F. Cheng, F. Xu, H. Cong, G. Cheng, Chem. Sci., 7(2016), pp. 1976-1981.
DOI URL |
[165] |
C.J. Huang, Y.S. Chen, Y. Chang, ACS Appl. Mater. Interfaces, 7(2015), pp. 2415-2423.
DOI URL |
[166] |
T. Wei, W. Zhan, L. Cao, C. Hu, Y. Qu, Q. Yu, H. Chen, ACS Appl. Mater. Interfaces, 8(2016), pp. 30048-30057.
DOI URL |
[167] |
B. Wu, L. Zhang, L. Huang, S. Xiao, Y. Yang, M. Zhong, J. Yang, Langmuir, 33(2017), pp. 7160-7168.
DOI URL |
[168] |
W. Zhan, Y. Qu, T. Wei, C. Hu, Y. Pan, Q. Yu, H. Chen, ACS Appl. Mater. Interfaces, 10(2018), pp. 10647-10655.
DOI URL |
[169] |
W. Zhan, T. Wei, L. Cao, C. Hu, Y. Qu, Q. Yu, H. Chen, ACS Appl. Mater. Interfaces, 9(2017), pp. 3505-3513.
DOI URL |
[170] |
T. Wei, Z. Tang, Q. Yu, H. Chen, ACS Appl. Mater. Interfaces, 9(2017), pp. 37511-37523.
DOI URL |
[171] | T. Wei, Q. Yu, H. Chen, Adv. Healthcare Mater., 8 (2019), Article e1801381 |
[172] | Q. Yu, H. Chen., Acta Polym. Sin., 51(2020), pp. 319-325. |
[1] | Xiaofan Zhai, Peng Ju, Fang Guan, Jizhou Duan, Nan Wang, Yimeng Zhang, Ke Li, Baorong Hou. Biofilm inhibition mechanism of BiVO4 inserted zinc matrix in marine isolated bacteria [J]. J. Mater. Sci. Technol., 2021, 75(0): 86-95. |
[2] | Mingjun Li, Christoph Schlaich, Jianguang Zhang, Ievgen S. Donskyi, Karin Schwibbert, Frank Schreiber, Yi Xia, Jörg Radnik, Tanja Schwerdtle, Rainer Haag. Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction [J]. J. Mater. Sci. Technol., 2021, 68(0): 160-171. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||