J. Mater. Sci. Technol. ›› 2021, Vol. 68: 172-183.DOI: 10.1016/j.jmst.2020.06.041
• Research Article • Previous Articles Next Articles
Yaxin Xua, Wenya Lia,*(), Longzhen Qua, Xiawei Yanga, Bo Songb, Rocco Lupoic, Shuo Yinc,*(
)
Received:
2020-02-27
Revised:
2020-05-11
Accepted:
2020-06-11
Published:
2021-03-30
Online:
2021-05-01
Contact:
Wenya Li,Shuo Yin
About author:
yins@tcd.ie(S. Yin).Yaxin Xu, Wenya Li, Longzhen Qu, Xiawei Yang, Bo Song, Rocco Lupoi, Shuo Yin. Solid-state cold spraying of FeCoCrNiMn high-entropy alloy: an insight into microstructure evolution and oxidation behavior at 700-900 °C[J]. J. Mater. Sci. Technol., 2021, 68: 172-183.
Fe | Co | Cr | Ni | Mn | |
---|---|---|---|---|---|
CSed FeCoCrNiMn | 20.00 ± 0.62 | 19.58 ± 0.43 | 20.66 ± 0.38 | 19.05 ± 0.39 | 20.61 ± 0.69 |
H5M [ | 20.51 | 20.45 | 19.29 | 19.46 | 20.29 |
CoCrFeMnNi HEA [ | 20.55 | 20.26 | 19.41 | 19.46 | 20.10 |
Table 1 Chemical composition of the CSed FeCoCiNiMn HEA by EPMA analysis (at.%)*.
Fe | Co | Cr | Ni | Mn | |
---|---|---|---|---|---|
CSed FeCoCrNiMn | 20.00 ± 0.62 | 19.58 ± 0.43 | 20.66 ± 0.38 | 19.05 ± 0.39 | 20.61 ± 0.69 |
H5M [ | 20.51 | 20.45 | 19.29 | 19.46 | 20.29 |
CoCrFeMnNi HEA [ | 20.55 | 20.26 | 19.41 | 19.46 | 20.10 |
Fig. 5. Data derived from EBSD maps of the as-sprayed FeCoCrNiMn: (a) misorientation distribution, (b) grain size distribution. The inserted graph in (b) is an enlarged view of grain size over 4 μm.
Fig. 7. Data derived from EBSD maps of the heat treated CSed FeCoCrNiMn: (a) misorientation distribution, (b) grain size distribution. The inserted graph in (b) is an enlarged view of grain size over 4 μm.
Fig. 9. Oxidation kinetics curves of the CSed FeCoCrNiMn during exposure at 700 °C (a, b), 800 °C (c, d) and 900 °C (e, f) for 100 h: (a, c, e) normal plots, (b, d, f) parabolic plots.
Material | Parabolic rate constant kp (mg2 cm-4 h-1) | ||
---|---|---|---|
700 °C | 800 °C | 900 °C | |
CSed FeCoCrNiMn* | 0.02028 | 0.0997 | 0.49226 (0-50 h) |
0.11197 (50-100 h) | |||
FeCoNiCrMn HEA in Ref. [ | 0.0197 | 0.0600 | 0.1487 |
FeCoNiCrMn HEA in Ref. [ | 0.0184 | 0.054 | 0.104 |
CoFeCrMnNi [ | 0.0119 | 0.0432 | 0.0792 |
Table 2 Parabolic rate constant kp of the CSed FeCoCrNiMn in the present study vs. the values reported in literature for bulk HEA.
Material | Parabolic rate constant kp (mg2 cm-4 h-1) | ||
---|---|---|---|
700 °C | 800 °C | 900 °C | |
CSed FeCoCrNiMn* | 0.02028 | 0.0997 | 0.49226 (0-50 h) |
0.11197 (50-100 h) | |||
FeCoNiCrMn HEA in Ref. [ | 0.0197 | 0.0600 | 0.1487 |
FeCoNiCrMn HEA in Ref. [ | 0.0184 | 0.054 | 0.104 |
CoFeCrMnNi [ | 0.0119 | 0.0432 | 0.0792 |
Fig. 10. Arrhenius plots of the parabolic oxidation rate constant kp by plotting the natural logarithm of kp versus reciprocal temperature. Our results are compared with oxidation data for pure manganese [35], H5M [23] and CrMnFeCoNi [26]. Q here refers to the apparent activation energy for oxidation (KJ/mol).
Fig. 11. Surface morphology of the oxide scales on the CSed FeCoCrNiMn after oxidation at 700 °C (a), 800 °C (b) and 900 °C (c) for 100 h, respectively. (The yellow circles in Fig. 9(a) indicate the interparticle boundaries.)
Fig. 12. Cross-sectional morphology of the oxide scales on the CSed FeCoCrNiMn after oxidation at 700 °C (a), 800 °C (b) and 900 °C (c) for 100 h, respectively.
Alloy | Point | O | Cr | Mn | Fe | Co | Ni |
---|---|---|---|---|---|---|---|
700 °C | P1 | 52.4 ± 0.13 | 0.5 ± 0.05 | 46.0 ± 0.17 | 0.6 ± 0.10 | 0.3 ± 0.07 | 0.2 ± 0.07 |
P2 | 45.1 ± 0.13 | 17.9 ± 0.13 | 31.8 ± 0.16 | 2.4 ± 0.11 | 1.5 ± 0.09 | 1.3 ± 0.09 | |
800 °C | P1 | 53.2 ± 0.40 | 2.2 ± 0.26 | 39.6 ± 0.45 | 2.9 ± 0.53 | 1.2 ± 0.40 | 0.9 ± 0.42 |
P2 | 51.8 ± 0.24 | 12.7 ± 0.28 | 30.1 ± 0.40 | 1.3 ± 0.28 | 2.1 ± 0.27 | 2.0 ± 0.29 | |
P3 | 47.7 ± 0.31 | 3.0 ± 0.23 | 54.4 ± 0.51 | 0.9 ± 0.39 | 1.1 ± 0.33 | 0.5 ± 0.37 | |
P4 | 29.7 ± 0.26 | 26.1 ± 0.40 | 15.9 ± 0.21 | 9.8 ± 0.19 | 9.3 ± 0.14 | 9.2 ± 0.11 | |
900 °C | P1 | 50.6 (0.12) | 0.3 (0.04) | 33.4(0.14) | 7.5(0.11) | 6.9(0.11) | 1.3(0.08) |
P2 | 51.3 (0.11) | 18.4 (0.12) | 25.2(0.13) | 2.9(0.09) | 1.2(0.07) | 1.0(0.07) | |
P3 | 44.4 (0.11) | 1.4 (0.13) | 51.7(0.11) | 0.5(0.09) | 0.9(0.04) | 1.1(0.08) |
Table 3 Chemical composition of the oxide scale in atomic percentage by EDS with standard deviation.
Alloy | Point | O | Cr | Mn | Fe | Co | Ni |
---|---|---|---|---|---|---|---|
700 °C | P1 | 52.4 ± 0.13 | 0.5 ± 0.05 | 46.0 ± 0.17 | 0.6 ± 0.10 | 0.3 ± 0.07 | 0.2 ± 0.07 |
P2 | 45.1 ± 0.13 | 17.9 ± 0.13 | 31.8 ± 0.16 | 2.4 ± 0.11 | 1.5 ± 0.09 | 1.3 ± 0.09 | |
800 °C | P1 | 53.2 ± 0.40 | 2.2 ± 0.26 | 39.6 ± 0.45 | 2.9 ± 0.53 | 1.2 ± 0.40 | 0.9 ± 0.42 |
P2 | 51.8 ± 0.24 | 12.7 ± 0.28 | 30.1 ± 0.40 | 1.3 ± 0.28 | 2.1 ± 0.27 | 2.0 ± 0.29 | |
P3 | 47.7 ± 0.31 | 3.0 ± 0.23 | 54.4 ± 0.51 | 0.9 ± 0.39 | 1.1 ± 0.33 | 0.5 ± 0.37 | |
P4 | 29.7 ± 0.26 | 26.1 ± 0.40 | 15.9 ± 0.21 | 9.8 ± 0.19 | 9.3 ± 0.14 | 9.2 ± 0.11 | |
900 °C | P1 | 50.6 (0.12) | 0.3 (0.04) | 33.4(0.14) | 7.5(0.11) | 6.9(0.11) | 1.3(0.08) |
P2 | 51.3 (0.11) | 18.4 (0.12) | 25.2(0.13) | 2.9(0.09) | 1.2(0.07) | 1.0(0.07) | |
P3 | 44.4 (0.11) | 1.4 (0.13) | 51.7(0.11) | 0.5(0.09) | 0.9(0.04) | 1.1(0.08) |
Fig. 14. XRD patterns of surface oxides at 700 °C, 800 °C and 900 °C for 100 h (a) and those performed at different positions from the outer oxide to the inner oxide at 900 °C (b).
[1] |
D.B. Miracle, O.N. Senkov, Acta Mater., 122 (2017), pp. 448-511.
DOI URL |
[2] |
M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, S.V. Divinski, Acta Mater., 146 (2018), pp. 211-224.
DOI URL |
[3] |
M.-H. Tsai, J.-W. Yeh, Mater. Res. Lett., 2 (2014), pp. 107-123.
DOI URL |
[4] |
A. Anupam, S. Kumar, N.M. Chavan, B.S. Murty, R.S. Kottada, J. Mater. Res., 34 (2019), pp. 796-806.
DOI PMID |
[5] |
S. Yin, W. Li, B. Song, X. Yan, M. Kuang, Y. Xu, K. Wen, R. Lupoi, J. Mater. Sci. Technol., 35 (2019), pp. 1003-1007.
DOI URL |
[6] |
S.Y. Chen, Y. Tong, P.K. Liaw, Entropy, 20 (2018), p. 937.
DOI URL |
[7] |
B. Li, B. Qian, Y. Xu, Z.Y. Liu, F.Z. Xuan, Mater. Lett., 252 (2019), pp. 88-91.
DOI URL |
[8] |
K.-C. Cheng, J.-H. Chen, S. Stadler, S.-H. Chen, Appl. Surf. Sci., 478 (2019), pp. 478-486.
DOI URL |
[9] | X. Niu, L. Wang, D. Sun, J. Dong, C. Li, J. Dalian Univ. Technol., 53 (2013), pp. 689-694. |
[10] | X. Wang, Y. Sun, R. Li, L. Wang, M. Chen, Hot Working Technology, 44 (12) (2015), pp. 174-181 (in Chinese). |
[11] |
M.-H. Hsieh, M.-H. Tsai, W.-J. Shen, J.-W. Yeh, Surf. Coat. Technol., 221 (2013), pp. 118-123.
DOI URL |
[12] | W.-y. Huo, H.-f. Shi, X. Ren, J.-y. Zhang, Adv. Mater. Sci. Eng., 2015 (2015), pp. 1-5. |
[13] |
Q. Ye, K. Feng, Z. Li, F. Lu, R. Li, J. Huang, Y. Wu, Appl. Surf. Sci., 396 (2017), pp. 1420-1426.
DOI URL |
[14] |
W.Y. Li, H. Assadi, F. Gaertner, S. Yin, Crit. Rev. Solid State Mat. Sci., 44 (2019), pp. 109-156.
DOI URL |
[15] |
H. Assadi, F. Gärtner, T. Stoltenhoff, H. Kreye, Acta Mater., 51 (2003), pp. 4379-4394.
DOI URL |
[16] |
W. Li, C. Cao, S. Yin, Prog. Mater. Sci., 110 (2020), 100633.
DOI URL |
[17] |
Y.-K. Wei, Y.-J. Li, Y. Zhang, X.-T. Luo, C.-J. Li, Corros. Sci., 138 (2018), pp. 105-115.
DOI URL |
[18] |
S. Kumar, M. Ramakrishna, N.M. Chavan, S.V. Joshi, Acta Mater., 130 (2017), pp. 177-195.
DOI URL |
[19] |
X.-T. Luo, Y.-K. Wei, Y. Wang, C.-J. Li, , Mater. Des., 85 (2015), pp. 527-533.
DOI URL |
[20] |
A. Chaudhuri, Y. Raghupathy, D. Srinivasan, S. Suwas, C. Srivastava, Acta Mater., 129 (2017), pp. 11-25.
DOI URL |
[21] |
J. Henao, A. Concustell, S. Dosta, G. Bolelli, I.G. Cano, L. Lusvarghi, J.M. Guilemany, Acta Mater., 125 (2017), pp. 327-339.
DOI URL |
[22] |
J. Lehtonen, H. Koivuluoto, Y. Ge, A. Juselius, S.-P. Hannula, Coatings, 10 (2020), p. 53.
DOI URL |
[23] |
W. Kai, C.C. Li, F.P. Cheng, K.P. Chu, R.T. Huang, L.W. Tsay, J.J. Kai, Corros. Sci., 121 (2017), pp. 116-125.
DOI URL |
[24] |
T.-K. Tsao, A.-C. Yeh, C.-M. Kuo, H. Murakami, Entropy, 18 (2016), p. 62.
DOI URL |
[25] |
W. Kai, C.C. Li, F.P. Cheng, K.P. Chu, R.T. Huang, L.W. Tsay, J.J. Kai, Corros. Sci., 108 (2016), pp. 209-214.
DOI URL |
[26] |
G. Laplanche, U.F. Volkert, G. Eggeler, E.P. George, Oxid. Met., 85 (2016), pp. 629-645.
DOI URL |
[27] | B. Gorr, F. Mueller, H.J. Christ, T. Mueller, H. Chen, A. Kauffmann, M. Heilmaier, J. Alloy Compd., 688 (2016), pp. 468-477. |
[28] |
D. Huang, J. Lu, Y. Zhuang, C. Tian, Y. Li, Corros. Sci., 158 (2019), 108088.
DOI URL |
[29] |
K.Y. Tsai, M.H. Tsai, J.W. Yeh, Acta Mater., 61 (2013), pp. 4887-4897.
DOI URL |
[30] |
X.-T. Luo, C.-X. Li, F.-L. Shang, G.-J. Yang, Y.-Y. Wang, C.-J. Li, Surf. Coat. Technol., 254 (2014), pp. 11-20.
DOI URL |
[31] |
C. Lee, J. Kim, J. Therm. Spray Technol., 24 (2015), pp. 592-610.
DOI URL |
[32] |
M.R. Rokni, C.A. Widener, V.R. Champagne, J. Therm. Spray Technol., 23 (2013), pp. 514-524.
DOI URL |
[33] |
K. Kang, H. Park, G. Bae, C. Lee, J. Mater. Sci., 47 (2012), pp. 4053-4061.
DOI URL |
[34] |
K. Kim, M. Watanabe, J. Kawakita, S. Kuroda, Scr. Mater., 59 (2008), pp. 768-771.
DOI URL |
[35] |
J. Païdassi, A. Echeverría, Acta Metall., 7 (1959), pp. 293-295.
DOI URL |
[36] |
Z. Yang, J.-t. Lu, Z. Yang, Y. Li, Y. Yuan, Y.-f. Gu, Corros. Sci., 125 (2017), pp. 106-113.
DOI URL |
[37] |
Y.-X. Xu, J.-T. Lu, X.-W. Yang, J.-B. Yan, W.-Y. Li, Corros. Sci., 127 (2017), pp. 10-20.
DOI URL |
[38] | Thermodynamics data comes from HSC Chemistry 6. |
[39] | MnO rt thermal expansion: Datasheet from "PAULING FILE Multinaries Edition - 2012, in SpringerMaterials (https://materials.springer.com/isp/physical-property/docs/ppp_b7c2348f95159a6cbe3e14bad25443fa), in: P. Villars, F. Hulliger (Eds.) Springer-Verlag Berlin Heidelberg & Material Phases Data System (MPDS), Switzerland & National Institute for Materials Science (NIMS), Japan. |
[40] | Chromium sesquioxide(Cr2O3): thermal expansion, density, melting point: Datasheet from Landolt-Börnstein - Group III Condensed Matter · Volume 41D: Non-Tetrahedrally Bonded Binary Compounds II, in SpringerMaterials (https://dx.doi.org/10.1007/10681735_651), in: O. Madelung, U. Rössler, M. Schulz (Eds.) Springer-Verlag Berlin Heidelberg. |
[41] | N. Birks, G.H. Meier, F. Pettit, Introduction to the High Temperature Oxidation of Metals (Second edition), Cambridge University Press, New York(2006). |
[42] |
V. Patel, W.Y. Li, A. Vairis, V. Badheka, Crit. Rev. Solid State Mat. Sci., 44 (2019), pp. 378-426.
DOI URL |
[43] |
C. Huang, W. Li, Y. Feng, Y. Xie, M.-P. Planche, H. Liao, G. Montavon, Mater. Charact., 125 (2017), pp. 76-82.
DOI URL |
[44] |
K. Yang, W. Li, C. Huang, X. Yang, Y. Xu, J. Mater. Sci. Technol., 34 (2018), pp. 2167-2177.
DOI URL |
[45] |
K. Yang, W. Li, Y. Xu, X. Yang, J. Alloy Compd., 774 (2018), pp. 1223-1232.
DOI URL |
[1] | Hongxia Wan, Dongdong Song, Xiaolei Shi, Yong Cai, Tingting Li, Changfeng Chen. Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment [J]. J. Mater. Sci. Technol., 2021, 60(0): 197-205. |
[2] | Haoxue Yang, Jinshan Li, Xiangyu Pan, William Yi Wang, Hongchao Kou, Jun Wang. Nanophase precipitation and strengthening in a dual-phase Al0.5CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 1-7. |
[3] | Y.D. Liu, J. Sun, W. Li, W.S. Gu, Z.L. Pei, J. Gong, C. Sun. Microstructural evolution and mechanical properties of NiCrAlYSi+NiAl/cBN abrasive coating coated superalloy during cyclic oxidation [J]. J. Mater. Sci. Technol., 2021, 71(0): 44-54. |
[4] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[5] | Ting Xiong, Wenfan Yang, Shijian Zheng, Zhaorui Liu, Yiping Lu, Ruifeng Zhang, Yangtao Zhou, Xiaohong Shao, Bo Zhang, Jun Wang, Fuxing Yin, Peter K. Liaw, Xiuliang Ma. Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1 [J]. J. Mater. Sci. Technol., 2021, 65(0): 216-227. |
[6] | Fangqiang Ning, Jibo Tan, Ziyu Zhang, Xinqiang Wu, Xiang Wang, En-Hou Han, Wei Ke. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66(0): 163-176. |
[7] | Xiao-Tao Luo, Yi Ge, Yingchun Xie, Yingkang Wei, Renzhong Huang, Ninshu Ma, Chidambaram Seshadri Ramachandran, Chang-Jiu Li. Dynamic evolution of oxide scale on the surfaces of feed stock particles from cracking and segmenting to peel-off while cold spraying copper powder having a high oxygen content [J]. J. Mater. Sci. Technol., 2021, 67(0): 105-115. |
[8] | X.W. Liu, N. Gao, J. Zheng, Y. Wu, Y.Y. Zhao, Q. Chen, W. Zhou, S.Z. Pu, W.M. Jiang, Z.T. Fan. Improving high-temperature mechanical properties of cast CrFeCoNi high-entropy alloy by highly thermostable in-situ precipitated carbides [J]. J. Mater. Sci. Technol., 2021, 72(0): 29-38. |
[9] | Chaoyue Chen, Yingchun Xie, Longtao Liu, Ruixin Zhao, Xiaoli Jin, Shanqing Li, Renzhong Huang, Jiang Wang, Hanlin Liao, Zhongming Ren. Cold spray additive manufacturing of Invar 36 alloy: microstructure, thermal expansion and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 72(0): 39-51. |
[10] | Cean Guo, Feng Zhou, Minghui Chen, Jinlong Wang, Shenglong Zhu, Fuhui Wang. An in-situ formed ceramic/alloy/ceramic sandwich barrier to resist elements interdiffusion between NiCrAlY coating and a Ni-based superalloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 1-11. |
[11] | Fangqiang Ning, Xiang Wang, Ying Yang, Jibo Tan, Ziyu Zhang, Dan Jia, Xinqiang Wu, En-Hou Han. Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water [J]. J. Mater. Sci. Technol., 2021, 70(0): 136-144. |
[12] | Lu Yang, Zhuo Cheng, Weiwei Zhu, Cancan Zhao, Fuzeng Ren. Significant reduction in friction and wear of a high-entropy alloy via the formation of self-organized nanolayered structure [J]. J. Mater. Sci. Technol., 2021, 73(0): 1-8. |
[13] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[14] | Dan Zhang, Qi Han, Kun Yu, Xiaopeng Lu, Ying Liu, Ze Lu, Qiang Wang. Antibacterial activities against Porphyromonas gingivalis and biological characteristics of copper-bearing PEO coatings on magnesium [J]. J. Mater. Sci. Technol., 2021, 61(0): 33-45. |
[15] | Kunming Pan, Yanping Yang, Shizhong Wei, Honghui Wu, Zhili Dong, Yuan Wu, Shuize Wang, Laiqi Zhang, Junping Lin, Xinping Mao. Oxidation behavior of Mo-Si-B alloys at medium-to-high temperatures [J]. J. Mater. Sci. Technol., 2021, 60(0): 113-127. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||