J. Mater. Sci. Technol. ›› 2021, Vol. 68: 184-190.DOI: 10.1016/j.jmst.2020.07.011
• Research Article • Previous Articles Next Articles
Yanan Zhaoa, Zongqing Maa,*(), Liming Yua, Ji Dongb, Yongchang Liua
Received:
2020-04-28
Revised:
2020-07-03
Accepted:
2020-07-05
Published:
2021-03-30
Online:
2021-05-01
Contact:
Zongqing Ma
About author:
*E-mail address: mzq0320@163.com (Z. Ma).Yanan Zhao, Zongqing Ma, Liming Yu, Ji Dong, Yongchang Liu. The simultaneous improvements of strength and ductility in additive manufactured Ni-based superalloy via controlling cellular subgrain microstructure[J]. J. Mater. Sci. Technol., 2021, 68: 184-190.
Element | Ni | Cr | Nb | Mo | Ti | Al | Co | Cu | Si | C | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
Content(wt.%) | 54.76 | 18.24 | 5.15 | 3.0 | 0.95 | 0.58 | 0.16 | 0.04 | 0.16 | 0.031 | Bal |
Table 1 The chemical composition of gas-atomized IN718 powder.
Element | Ni | Cr | Nb | Mo | Ti | Al | Co | Cu | Si | C | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
Content(wt.%) | 54.76 | 18.24 | 5.15 | 3.0 | 0.95 | 0.58 | 0.16 | 0.04 | 0.16 | 0.031 | Bal |
Sample No. | Heat treatment parameters |
---|---|
H0 | As-printed |
H1 | 1080 ℃ × 50 min, AC |
H2 | 1080 ℃ × 80 min, AC |
H3 | 1080 ℃ × 110 min, AC |
H4 | 1080 ℃ × 50 min, AC; 720 ℃ × 8 h, cooled at 55 ℃/h to 620 ℃, 620 ℃ × 8 h, AC |
H5 | 1080 ℃ × 110 min, AC; 720 ℃ × 8 h, cooled at 55 ℃/h to 620 ℃, 620 ℃ × 8 h, AC |
Table 2 The detailed information of heat treatment for the SLM manufactured IN718 alloy.
Sample No. | Heat treatment parameters |
---|---|
H0 | As-printed |
H1 | 1080 ℃ × 50 min, AC |
H2 | 1080 ℃ × 80 min, AC |
H3 | 1080 ℃ × 110 min, AC |
H4 | 1080 ℃ × 50 min, AC; 720 ℃ × 8 h, cooled at 55 ℃/h to 620 ℃, 620 ℃ × 8 h, AC |
H5 | 1080 ℃ × 110 min, AC; 720 ℃ × 8 h, cooled at 55 ℃/h to 620 ℃, 620 ℃ × 8 h, AC |
Fig. 1. TEM images of cellular subgrain microstructure in as-printed IN718 alloy with (a) low magnification image, (b) high magnification image and (c) The EDX spectrum analysis diagram of the segregation phase at subgrain boundaries.
Fig. 2. The TEM images of subgrain structures for the (a) H0 as-printed sample, (b) H1 sample heated at 1080 ℃ for 50 min, (c) H2 sample heated at 1080 ℃ for 80 min and (d) H3 sample heated at 1080 ℃ for 110 min. The inset figure in Fig. 2(d) is the diffraction patterns of the NbC at initial grain boundary.
Fig. 4. The SEM microstructure of SLM manufactured samples after homogenization and aging treatment with (a) H4 sample and (b) H5 sample. And the TEM images of samples after homogenization and aging treatment with (c) and (e) for H4 sample, and (d) and (f) for H5 sample.
[1] | C.K.C.C.Y. Yap, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Appl. Phys. Rev., 2 (2015), 041101. |
[2] |
B. Berman, Bus. Horiz., 55 (2012), pp. 155-162.
DOI URL |
[3] |
P. Tao, H. Li, B. Huang, Q. Hu, S. Gong, Q. Xu, Vacuum, 159 (2019), pp. 382-390.
DOI URL |
[4] |
D. Zhang, Z. Feng, C. Wang, W. Wang, Z. Liu, W. Niu, Mater. Sci. Eng. A, 724 (2018), pp. 357-367.
DOI URL |
[5] |
O.O. Salman, C. Gammer, A.K. Chaubey, J. Eckert, S. Scudino, Mater. Sci. Eng. A, 748 (2019), pp. 205-212.
DOI URL |
[6] | Y. Yang, O. Ragnvaldsen, Y. Bai, M. Yi, B.-X. Xu, NPJ Comput. Mater., 5(2019). |
[7] |
L. Löber, F.P. Schimansky, U. Kühn, F. Pyczak, J. Eckert, J. Mater, Process. Technol., 214 (2014), pp. 1852-1860.
DOI URL |
[8] |
Y. Zhao, Q. Guo, Z. Ma, L. Yu, Mater. Sci. Eng. A, 791 (2020), 139735.
DOI URL |
[9] |
L. Qin, C. Chen, M. Zhang, K. Yan, G. Cheng, H. Jing, X. Wang, Rapid Prototyping J., 23 (2017), pp. 1119-1129.
DOI URL |
[10] |
W.M. Tucho, P. Cuvillier, A. Sjolyst-Kverneland, V. Hansen, Mater. Sci. Eng. A, 689 (2017), pp. 220-232.
DOI URL |
[11] |
M.L. Montero-Sistiaga, S. Pourbabak, J. Van Humbeeck, D. Schryvers, K. Vanmeensel, Mater. Des., 165 (2019), 107598.
DOI URL |
[12] | A.J. Birnbaum, J.C. Steuben, E.J. Barrick, A.P. Iliopoulos, J.G. Michopoulos, Addit. Manuf., 29 (2019), 100784. |
[13] |
K. Bartkowiak, S. Ullrich, T. Frick, M. Schmidt, Phys. Procedia, 12 (2011), pp. 393-401.
DOI URL |
[14] |
B. AlMangour, Y.-K. Kim, D. Grzesiak, K.-A. Lee, Compos. Pt. B-Eng., 156 (2019), pp. 51-63.
DOI URL |
[15] |
Y.T.Z.J.Y. HUANG, H. JIANG, T.C. LOWE, Acta Mater., 49 (2001), pp. 1497-1505.
DOI URL |
[16] |
I.A. Ovid’ko, R.Z. Valiev, Y.T. Zhu, Prog. Mater. Sci., 94 (2018), pp. 462-540.
DOI URL |
[17] | X. Liu, X. Zhou, B. Xu, J. Ma, C. Zhao, Z. Shen, W. Liu, Materials, 12 (2019). |
[18] |
L. Liu, Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.-L. Chiu, J. Li, Z. Zhang, Q. Yu, Z. Shen, Mater. Today, 21 (2018), pp. 354-361.
DOI URL |
[19] |
Z.W. Yang, J. Lian, J. Wang, X.Q. Cai, Y. Wang, D.P. Wang, Z.M. Wang, Y.C. Liu, J. Alloy Compd., 819 (2020), 153324.
DOI URL |
[20] | B. Zhai, K. Zhou, H.P. Wang, Appl. Phys. A, 126(2019). |
[21] | L.W.U. Jing, L.I. Chong, W.U. Yuting, X.I.A. Xingchuan, L.I. Huijun, Acta Metall. Sin., 56 (2020), pp. 21-35. |
[22] |
S. Sui, H. Tan, J. Chen, C. Zhong, Z. Li, W. Fan, A. Gasser, W. Huang, Acta Mater., 164 (2019), pp. 413-427.
DOI URL |
[23] |
H. Qi, M. Azer, A. Ritter, Metall. Mater. Trans. A, 40 (2009), pp. 2410-2422.
DOI URL |
[24] |
G.H. Cao, T.Y. Sun, C.H. Wang, X. Li, M. Liu, Z.X. Zhang, P.F. Hu, A.M. Russell, R. Schneider, D. Gerthsen, Z.J. Zhou, C.P. Li, G.F. Chen, Mater. Charact., 136 (2018), pp. 398-406.
DOI URL |
[25] | J. Schneider, B. Lund, M. Fullen, Addit. Manuf., 21 (2018), pp. 248-254. |
[26] |
J. Li, Z. Zhao, P. Bai, H. Qu, B. Liu, L. Li, L. Wu, R. Guan, H. Liu, Z. Guo, J. Alloys Compd., 772 (2019), pp. 861-870.
DOI URL |
[27] |
J.-P. Choi, G.-H. Shin, S. Yang, D.-Y. Yang, J.-S. Lee, M. Brochu, J.-H. Yu, Powder Technol., 310 (2017), pp. 60-66.
DOI URL |
[28] |
G. Wang, H. Ouyang, C. Fan, Q. Guo, Z. Li, W. Yan, Z. Li, Mater. Res. Lett., 8 (2020), pp. 283-290.
DOI URL |
[29] |
S. Sui, J. Chen, L. Ma, W. Fan, H. Tan, F. Liu, X. Lin, J. Alloy Compd., 770 (2019), pp. 125-135.
DOI URL |
[30] | G.B.K.R.V. Patil, J. Nucl. Mater. (1996), pp. 57-60. |
[31] |
D. Dai, D. Gu, Mater. Des., 55 (2014), pp. 482-491.
DOI URL |
[32] |
P.B. Hirsch, J. Silcox, R.E. Smallman, K.H. Westmacott, Philos. Mag., 3 (2006), pp. 897-908.
DOI URL |
[33] |
L. Cui, J. Yu, J. Liu, T. Jin, X. Sun, Mater. Sci. Eng. A, 710 (2018), pp. 309-317.
DOI URL |
[34] |
C. Man, Z. Duan, Z. Cui, C. Dong, D. Kong, T. Liu, S. Chen, X. Wang, Mater. Lett., 243 (2019), pp. 157-160.
DOI URL |
[35] |
A. Yamanaka, K. McReynolds, P.W. Voorhees, Acta Mater., 133 (2017), pp. 160-171.
DOI URL |
[36] |
F. Liu, R. Kirchheim, Scr. Mater., 51 (2004), pp. 521-525.
DOI URL |
[37] |
H. Guo, Y. Zhao, Y. Sun, J. Tian, H. Hou, K. Qi, X. Tian, Superlattices Microstruct., 129 (2019), pp. 163-175.
DOI URL |
[38] |
H. Zhang, C. Li, Y. Liu, Q. Guo, Y. Huang, H. Li, J. Yu, J. Alloy Compd., 716 (2017), pp. 65-72.
DOI URL |
[39] |
J.M. Silcock, W.J. Tunstall, Philos. Mag., 10 (1964), pp. 361-389.
DOI URL |
[40] |
Hosson Md.H.J.T.M.D, Scr. Mater., 44 (2001), p. 281.
DOI URL |
[41] |
F. Perrard, A. Deschamps, P. Maugis, Acta Mater., 55 (2007), pp. 1255-1266.
DOI URL |
[42] |
B. AlMangour, J.-M. Yang, Int. J. Adv. Manuf. Technol., 90 (2016), pp. 119-126.
DOI URL |
[43] | Z. Dong, N. Liu, W. Hu, Z. Ma, C. Li, C. Liu, Q. Guo, Y. Liu, J. Mater. Sci. Technol., 36 (2020), pp. 118-127. |
[44] |
W. Hu, Z. Dong, L. Yu, Z. Ma, Y. Liu, J. Mater. Sci. Technol., 36 (2020), pp. 84-90.
DOI URL |
[45] |
D. Wang, C. Song, Y. Yang, Y. Bai, Mater. Des., 100 (2016), pp. 291-299.
DOI URL |
[1] | Jiachen Zhang, Lin Liu, Taiwen Huang, Jia Chen, Kaili Cao, Xinxin Liu, Jun Zhang, Hengzhi Fu. Coarsening kinetics of γ′ precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging [J]. J. Mater. Sci. Technol., 2021, 62(0): 1-10. |
[2] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
[3] | Xiaotan Yuan, Tao Zhou, Weili Ren, Jianchao Peng, Tianxiang Zheng, Long Hou, Jianbo Yu, Zhongming Ren, Peter K. Liaw, Yunbo Zhong. Nondestructive effect of the cusp magnetic field on the dendritic microstructure during the directional solidification of Nickel-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 52-59. |
[4] | Min Yang, Jun Zhang, Weimin Gui, Songsong Hu, Zhuoran Li, Min Guo, Haijun Su, Lin Liu. Coupling phase field with creep damage to study γʹ evolution and creep deformation of single crystal superalloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 129-137. |
[5] | Y.D. Liu, J. Sun, W. Li, W.S. Gu, Z.L. Pei, J. Gong, C. Sun. Microstructural evolution and mechanical properties of NiCrAlYSi+NiAl/cBN abrasive coating coated superalloy during cyclic oxidation [J]. J. Mater. Sci. Technol., 2021, 71(0): 44-54. |
[6] | Cean Guo, Feng Zhou, Minghui Chen, Jinlong Wang, Shenglong Zhu, Fuhui Wang. An in-situ formed ceramic/alloy/ceramic sandwich barrier to resist elements interdiffusion between NiCrAlY coating and a Ni-based superalloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 1-11. |
[7] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
[8] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Xiangdong Zha, Yingche Ma, Kui Liu. Microstructure evolution and stress rupture properties of K4750 alloys with various B contents during long-term aging [J]. J. Mater. Sci. Technol., 2021, 73(0): 108-115. |
[9] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[10] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[11] | Kunlei Hou, Min Wang, Meiqiong Ou, Haoze Li, Xianchao Hao, Yingche Ma, Kui Liu. Effects of microstructure evolution on the deformation mechanisms and tensile properties of a new Ni-base superalloy during aging at 800 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 40-52. |
[12] | L. Deng, K. Kosiba, R. Limbach, L. Wondraczek, U. Kühn, S. Pauly. Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 60(0): 139-146. |
[13] | Yeshun Huang, Xinguang Wang, Chuanyong Cui, Zihao Tan, Jinguo Li, Yanhong Yang, Jinlai Liu, Yizhou Zhou, Xiaofeng Sun. Effect of thermal exposure on the microstructure and creep properties of a fourth-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 180-187. |
[14] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[15] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||