J. Mater. Sci. Technol. ›› 2021, Vol. 68: 191-198.DOI: 10.1016/j.jmst.2020.06.045
• Research Article • Previous Articles Next Articles
Hongyan Wanga, Ran Weia, Xiumin Lia,*(), Xuli Mab, Xiaogang Haoc, Guoqing Guand
Received:
2020-04-04
Revised:
2020-06-09
Accepted:
2020-06-11
Published:
2021-03-30
Online:
2021-05-01
Contact:
Xiumin Li
About author:
*E-mail address: xiuminli0516@zzu.edu.cn (X. Li).Hongyan Wang, Ran Wei, Xiumin Li, Xuli Ma, Xiaogang Hao, Guoqing Guan. Nanostructured amorphous Fe29Co27Ni23Si9B12 high-entropy-alloy: an efficient electrocatalyst for oxygen evolution reaction[J]. J. Mater. Sci. Technol., 2021, 68: 191-198.
Fig. 1. LSV (A) and Tafel curve (B) of the as-spun A-HEA in 1.0 M HCl solution saturated by KCl with a scan rate of 2 mV/s. The chronoamperometries (C) of A-HEA ribbons etched at different applied potentials.
Fig. 3. XPS spectra of Fe 2p 4f (A), Co 2p (B), Ni 2p (C), B 1 s (D) and Si 2p (E) of A-HEA-0 h and A-HEA-3 h. The satellite peaks for Ni and Co are denoted as “sat.”.
Fig. 4. Model structure of HEA with FCC (A) and amorphous (B) structure. Polarization curves of C-HEA, A-HEA and etched A-HEA electrodes (C), and the Tafel plots for OER (D). Theoretical oxygen evolution amount and the measured oxygen evolution amount during electrolysis process by using A-HEA-3 h electrode (E). Anodic charging current as a function of scan rate (F), the determined double-layer capacitances were taken as the averages of the absolute values of the slopes after the linear fitting of the data. (G) Nyquist plots of C-HEA, A-HEA, A-HEA-3 h electrodes, and (H) time dependence of potential for the A-HEA-3 h electrode at a current density of 100 mA cm-2 over 50 h.
Catalysts | Electrolyte | η (mV)@ 10 mA cm-2 | Ref. |
---|---|---|---|
A-HEA Etched A-HEA | 1 M KOH 1 M KOH | 277 230 | This work This work |
IrO2/C Ir/IrO2 IrO2 RuO2 | 0.1 M KOH 0.5 M H2SO4 0.1 M HClO4 0.1 M HClO4 | 470 250 380 310 | [ [ [ [ |
FeCoNiLaPt HEA MnFeCoNi HEA CoFe‐N‐CN/CNTs FeNi/NiFe2O4@NC CoNi | 0.1 M KOH 1 M KOH 1 M KOH 1 M KOH 0.1 M KOH | 377 302 285 316 360 | [ [ [ [ [ |
(Co,Ni)Se2@NiFe LDH NiFe LDH/Co/N-C Co3+-NiFe LDH NiFe LDH/RGO Ni2/3Fe1/3-GO | 1 M KOH 1 M KOH 1 M KOH 1 M KOH 1 M KOH | 277 312 290 245 230 | [ [ [ [ [ |
CoO Co3O4/Co-Fe oxide CeOx/CoOx Co3O4 Co3O4 | 1 M KOH 1 M KOH 0.1 M NaOH 1 M KOH 1 M NaOH | 306 297 331 387 360 | [ [ [ [ [ |
CoP Ni2P Co4N/CC CoP CoS/Ti | 0.5 M H2SO4 1 M KOH 1 M KOH 1 M KOH 1 M KOH | ∼250 310 257 360 361 | [ [ [ [ [ |
Table 1 Comparison of electrocatalytic OER activities of Fe29Co27Ni23Si9B12 HEA electrodes with various state-of-the-art OER catalysts.
Catalysts | Electrolyte | η (mV)@ 10 mA cm-2 | Ref. |
---|---|---|---|
A-HEA Etched A-HEA | 1 M KOH 1 M KOH | 277 230 | This work This work |
IrO2/C Ir/IrO2 IrO2 RuO2 | 0.1 M KOH 0.5 M H2SO4 0.1 M HClO4 0.1 M HClO4 | 470 250 380 310 | [ [ [ [ |
FeCoNiLaPt HEA MnFeCoNi HEA CoFe‐N‐CN/CNTs FeNi/NiFe2O4@NC CoNi | 0.1 M KOH 1 M KOH 1 M KOH 1 M KOH 0.1 M KOH | 377 302 285 316 360 | [ [ [ [ [ |
(Co,Ni)Se2@NiFe LDH NiFe LDH/Co/N-C Co3+-NiFe LDH NiFe LDH/RGO Ni2/3Fe1/3-GO | 1 M KOH 1 M KOH 1 M KOH 1 M KOH 1 M KOH | 277 312 290 245 230 | [ [ [ [ [ |
CoO Co3O4/Co-Fe oxide CeOx/CoOx Co3O4 Co3O4 | 1 M KOH 1 M KOH 0.1 M NaOH 1 M KOH 1 M NaOH | 306 297 331 387 360 | [ [ [ [ [ |
CoP Ni2P Co4N/CC CoP CoS/Ti | 0.5 M H2SO4 1 M KOH 1 M KOH 1 M KOH 1 M KOH | ∼250 310 257 360 361 | [ [ [ [ [ |
Fig. 5. (A) Atomic model of A-HEA slabs and the presented OER pathway. (B) Overpotential of original C-HEA and A-HEA for supporting 10 and 100 mA cm-2 current density. (C) The free energy diagrams of OER over the A-HEA and C-HEA slab catalysts. Density of states of A-HEA (D) and C-HEA (E), partial density of states of B (F), Si (G), Fe (H), Co (I) and Ni (J) elements.
[1] | Z. Jin, J. Mater, Sci. Technol., 49 (2020), pp. 144-156. |
[2] | W. Li, Q. Hua, Y. Liu, M. Zhang, J. Wang, X. Han, C. Zhong, W. Hu, Y. Deng, J. Mater, Sci. Technol., 37 (2020), pp. 154-160. |
[3] |
X. Li, X. Hao, A. Abudula, G. Guan, J. Mater. Chem. A, 4 (2016), pp. 11973-12000.
DOI URL |
[4] |
P. Xie, Y. Yao, Z. Huang, Z. Liu, J. Zhang, T. Li, G. Wang, R. Shahbazian-Yassar, L. Hu, C. Wang, Nat. Commun., 10 (2019), p. 4011.
DOI URL |
[5] |
M.S. Lal, R. Sundara, ACS Appl. Mater. Interfaces, 11 (2019), pp. 30846-30857.
DOI URL |
[6] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater., 4 (2019), pp. 515-534.
DOI PMID |
[7] | T.A.A. Batchelor, J.K. Pedersen, S.H. Winther, I.E. Castelli, K.W. Jacobsen, J. Rossmeisl Joule, 3 (2019), pp. 834-845. |
[8] |
Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater., 124 (2017), pp. 143-150.
DOI URL |
[9] |
F. Okejiri, Z. Zhang, J. Liu, M. Liu, S. Yang, S. Dai, ChemSusChem, 13 (2020), pp. 111-115.
DOI URL |
[10] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci., 61 (2014), pp. 1-93.
DOI URL |
[11] |
T. Bligaard, J.K. Nørskov, Electrochim. Acta, 52 (2007), pp. 5512-5516.
DOI URL |
[12] |
J.R. Kitchin, J.K. Nørskov, M.A. Barteau, J. Chen, Phys. Rev. Lett., 93 (2004), 156801.
PMID |
[13] |
C. Oses, C. Toher, S. Curtarolo, Nat. Rev. Mater., 5 (2020), pp. 295-309.
DOI URL |
[14] |
G. Zhang, K. Ming, J. Kang, Q. Huang, Z. Zhang, X. Zheng, X. Bi, Electrochim. Acta, 279 (2018), pp. 19-23.
DOI URL |
[15] |
W. Dai, T. Lu, Y. Pan, J. Power Sources, 430 (2019), pp. 104-111.
DOI URL |
[16] |
R. Li, X. Liu, R. Wu, J. Wang, Z. Li, K. Chan, H. Wang, Y. Wu, Z. Lu, Adv. Mater., 31 (2019), 1904989.
DOI URL |
[17] | S. Ju, J. Feng, P. Zou, W. Xu, S. Wang, W. Gao, H. Qiu, J. Huo, J. Wang, J. Mater, Chem. A, 8 (2020), pp. 3246-3251. |
[18] |
M.W. Glasscott, A.D. Pendergast, S. Goines, A.R. Bishop, A.T. Hoang, C. Renault, J.E. Dick, Nat. Commun., 10 (2019), p. 2650.
DOI PMID |
[19] | C.I. Müller, T. Rauscher, A. Schmidt, T. Schubert, T. Weißgärber, B. Kieback, L. Röntzsch, EInt. J. Hydrog. nergy, 39 (2014), pp. 8926-8937. |
[20] |
J. Ye, J. Lu, C. Liu, Q. Wang, Y. Yang, Nat. Mater., 9 (2010), pp. 619-623.
DOI PMID |
[21] |
Y. Pei, G. Zhou, N. Luan, B. Zong, M. Qiao, F.F. Tao, Chem. Soc. Rev., 41 (2012), pp. 8140-8162.
DOI URL |
[22] |
R. Wei, H. Sun, C. Chen, J. Tao, F. Li, J. Magn, Magn. Mater., 449 (2018), pp. 63-67.
DOI URL |
[23] |
P.E. Blöchl, Phys. Rev. B, 50 (1994), pp. 17953-17979.
DOI URL |
[24] |
G. Kresse, J. Furthmüller, Phys. Rev. B, 54 (1996), pp. 11169-11186.
DOI URL |
[25] |
G. Kresse, J. Furthmüller, Comput. Mater. Sci., 6 (1996), pp. 15-50.
DOI URL |
[26] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77 (1996), pp. 3865-3868.
DOI URL |
[27] | S. Nosé, J. Chem. Phys., 81 (1984), pp. 511-519. |
[28] |
D. Wang, Q. Li, C. Han, Q. Lu, Z. Xing, X. Yang, Nat. Commun., 10 (2019), p. 3899.
DOI URL |
[29] |
X.H. Zhang, Y.Q. Zeng, L. Yin, J.Q. Jiang, Y. Pan, R. Li, L. Liu, T. Li, K.C. Chan, Corros. Sci., 141 (2018), pp. 109-116.
DOI URL |
[30] |
S. Zhao, Y. Osetsky, G.M. Stocks, Y. Zhang, npj Comput. Mater., 5 (2019), pp. 1-7.
DOI URL |
[31] |
T.Y. Ma, J.L. Cao, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed., 55 (2016), pp. 1138-1142.
DOI URL |
[32] |
X. Tan, J. Shen, N. Semagina, M. Secanell, J. Catal., 371 (2019), pp. 57-70.
DOI URL |
[33] |
Y. Yao, S. Hu, W. Chen, Z. Huang, W. Wei, T. Yao, R. Liu, K. Zang, X. Wang, G. Wu, W. Yuan, T. Yuan, B. Zhu, W. Liu, Z. Li, D. He, Z. Xue, Y. Wang, X. Zheng, J. Dong, C. Chang, Y. Chen, X. Hong, J. Luo, S. Wei, W. Li, P. Strasser, Y. Wu, Y. Li, Nat. Catal., 2 (2019), pp. 304-313.
DOI URL |
[34] |
W. Dai, T. Lu, Y. Pan, J. Power Sources, 430 (2019), pp. 104-111.
DOI URL |
[35] |
Y. Liu, F. Li, H. Yang, J. Li, P. Ma, Y. Zhu, J. Ma, ChemSusChem, 11 (2018), pp. 2358-2366.
DOI PMID |
[36] |
Y. Ma, X. Dai, M. Liu, J. Yong, H. Qiao, A. Jin, Z. Li, X. Huang, H. Wang, X. Zhang, ACS Appl. Mater. Interfaces, 8 (2016), pp. 34396-34404.
DOI URL |
[37] | Z. Li, H. He, H. Cao, S. Sun, W. Diao, D. Gao, P. Lu, S. Zhang, Z. Guo, M. Li, R. Liu, D. Ren, C. Liu, Y. Zhang, Z. Yang, J. Jiang, G. Zhang, Appl. Catal., B 240 (2019), pp. 112-121. |
[38] |
J. Li, H. Sun, L. Lv, Z. Li, X. Ao, C. Xu, Y. Li, C. Wang, ACS Appl. Mater. Interfaces, 11 (2019), pp. 8106-8114.
DOI URL |
[39] |
Q. Wang, L. Shang, R. Shi, X. Zhang, Y. Zhao, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Adv. Energy Mater., 7 (2017), 1700467.
DOI URL |
[40] |
Y. Bi, Z. Cai, D. Zhou, Y. Tian, Q. Zhang, Q. Zhang, Y. Kuang, Y. Li, X. Sun, X. Duan, J. Catal., 358 (2018), pp. 100-107.
DOI URL |
[41] |
D.H. Youn, Y.B. Park, J.Y. Kim, G. Magesh, Y.J. Jang, J.S. Lee, J. Power Sources, 294 (2015), pp. 437-443.
DOI URL |
[42] |
W. Ma, R. Ma, C.X. Wang, J.B. Liang, X.H. Liu, K.H. Zhou, T. Sasak, ACS Nano, 9 (2015), pp. 1977-1984.
DOI URL |
[43] |
W. Xu, F. Lyu, Y. Bai, A. Gao, J. Feng, Z. Cai, Y. Yin, Nano Energy, 43 (2018), pp. 110-116.
DOI URL |
[44] |
X. Wang, L. Yu, B.Y. Guan, S. Song, X.W. Lou, Adv. Mater., 30 (2018), 1801211.
DOI URL |
[45] |
J.H. Kim, K. Shin, K. Kawashima, D.H. Youn, J. Lin, T.E. Hong, Y. Liu, B.R. Wygant, J. Wang, G. Henkelman, C.B. Mullins, ACS Catal., 8 (2018), pp. 4257-4265.
DOI URL |
[46] |
L. Huang, J. Jiang, L. Ai, ACS Appl. Mater. Inter., 9 (2017), p. 7059.
DOI URL |
[47] |
C.K. Ranaweera, C. Zhang, S. Bhoyate, P.K. Kahol, M. Ghimire, S.R. Mishra, F. Perez, B.K. Gupta, R.K. Gupta, Mater. Chem. Front., 1 (2017), p. 1580.
DOI URL |
[48] |
K. He, T.T. Tsega, X. Liu, J. Zai, X. Li, X. Liu, W. Li, N. Ali, X. Qian, Angew. Chem. Int. Ed., 58 (2019), pp. 11903-11909.
DOI URL |
[49] |
A.L. Han, H.L. Chen, Z.J. Sun, J. Xua, P.W. Du, Chem. Commun., 51 (2015), pp. 11626-11629.
DOI URL |
[50] |
P. Chen, K. Xu, Z. Fang, Y. Tong, J. Wu, X. Lu, X. Peng, H. Ding, C. Wu, Y. Xie, Angew. Chem., 127 (2015), pp. 14923-14927.
DOI URL |
[51] |
J. Ryu, N. Jung, J.H. Jang, H.J. Kim, S.J. Yoo, ACS Catal., 5 (2015), pp. 4066-4074.
DOI URL |
[52] |
T.T. Liu, Y.H. Liang, Q. Liu, X.P. Sun, Y.Q. He, A.M. Asiri, Electrochem. Commun., 60 (2015), pp. 92-96.
DOI URL |
[1] | Yuanmei Xu, Xiaoqin Zhang, Zhihong Chen, Krzysztof Kempa, Xin Wang, Lingling Shui. Chemical vapor deposition of amorphous molybdenum sulphide on black phosphorus for photoelectrochemical water splitting [J]. J. Mater. Sci. Technol., 2021, 68(0): 1-7. |
[2] | Tingru Chen, Yusuke Asakura, Takuya Hasegawa, Teruki Motohashi, Shu Yin. A simple and novel effective strategy using mechanical treatment to improve the oxygen uptake/release rate of YBaCo4O7+δ for thermochemical cycles [J]. J. Mater. Sci. Technol., 2021, 68(0): 8-15. |
[3] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
[4] | Hongtao Zeng, Yong Yang, Minhang Zeng, Moucheng Li. Effect of dissolved oxygen on electrochemical corrosion behavior of 2205 duplex stainless steel in hot concentrated seawater [J]. J. Mater. Sci. Technol., 2021, 66(0): 177-185. |
[5] | Jiashen Meng, Ziang Liu, Xiong Liu, Wei Yang, Lianzhou Wang, Yan Li, Yuan-Cheng Cao, Xingcai Zhang, Liqiang Mai. Scalable fabrication and active site identification of MOF shell-derived nitrogen-doped carbon hollow frameworks for oxygen reduction [J]. J. Mater. Sci. Technol., 2021, 66(0): 186-192. |
[6] | Hairui Xing, Ping Hu, Shilei Li, Yegai Zuo, Jiayu Han, Xingjiang Hua, Kuaishe Wang, Fan Yang, Pengfa Feng, Tian Chang. Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: A review [J]. J. Mater. Sci. Technol., 2021, 62(0): 180-194. |
[7] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
[8] | Yuqiao Dong, Jiaqi Li, Dake Xu, Guangling Song, Dan Liu, Haipeng Wang, M.Saleem Khan, Ke Yang, Fuhui Wang. Investigation of microbial corrosion inhibition of Cu-bearing 316L stainless steel in the presence of acid producing bacterium Acidithiobacillus caldus SM-1 [J]. J. Mater. Sci. Technol., 2021, 64(0): 176-186. |
[9] | Kai Huang, Yuyang Xu, Yanpeng Song, Ruyue Wang, Hehe Wei, Yuanzheng Long, Ming Lei, Haolin Tang, Jiangang Guo, Hui Wu. NiPS3 quantum sheets modified nitrogen-doped mesoporous carbon with boosted bifunctional oxygen electrocatalytic performance [J]. J. Mater. Sci. Technol., 2021, 65(0): 1-6. |
[10] | Xiangtao Yu, Xiangyu Ren, Yanwei Zhang, Zhangfu Yuan, Zhuyin Sui, Mingyong Wang. Self-supporting hierarchically micro/nano-porous Ni3P-Co2P-based film with high hydrophilicity for efficient hydrogen production [J]. J. Mater. Sci. Technol., 2021, 65(0): 118-125. |
[11] | Jing Wang, Li You, Zhibin Li, Xiongjun Liu, Rui Li, Qing Du, Xianzhen Wang, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 145-150. |
[12] | Zhihong Luo, Fujie Li, Chengliang Hu, Liankun Yin, Degui Li, Chenhao Ji, Xiangqun Zhuge, Kui Zhang, Kun Luo. Highly dispersed silver nanoparticles for performance-enhanced lithium oxygen batteries [J]. J. Mater. Sci. Technol., 2021, 73(0): 171-177. |
[13] | Bin Wang, Yuanfu Chen, Qi Wu, Yingjiong Lu, Xiaojuan Zhang, Xinqiang Wang, Bo Yu, DongXu Yang, Wanli Zhang. A co-coordination strategy to realize janus-type bimetallic phosphide as highly efficient and durable bifunctional catalyst for water splitting [J]. J. Mater. Sci. Technol., 2021, 74(0): 11-20. |
[14] | Thanh-Tung Le, Xiao Liu, Peijun Xin, Qing Wang, Chunyan Gao, Ye Wu, Yong Jiang, Zhangjun Hu, Shoushuang Huang, Zhiwen Chen. Phosphorus-doped Fe7S8@C nanowires for efficient electrochemical hydrogen and oxygen evolutions: Controlled synthesis and electronic modulation on active sites [J]. J. Mater. Sci. Technol., 2021, 74(0): 168-175. |
[15] | Man Zhang, Di Hu, Zhenhao Xu, Biying Liu, Mebrouka Boubeche, Zuo Chen, Yuchen Wang, Huixia Luo, Kai Yan. Facile synthesis of Ni-, Co-, Cu-metal organic frameworks electrocatalyst boosting for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 72(0): 172-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||