J. Mater. Sci. Technol. ›› 2021, Vol. 68: 8-15.DOI: 10.1016/j.jmst.2020.06.043
• Research Article • Previous Articles Next Articles
Tingru Chena, Yusuke Asakuraa, Takuya Hasegawaa, Teruki Motohashib, Shu Yina,*()
Received:
2020-03-31
Revised:
2020-05-15
Published:
2021-03-30
Online:
2021-05-01
Contact:
Shu Yin
About author:
*E-mail address: yin.shu.b5@tohoku.ac.jp (S. Yin).Tingru Chen, Yusuke Asakura, Takuya Hasegawa, Teruki Motohashi, Shu Yin. A simple and novel effective strategy using mechanical treatment to improve the oxygen uptake/release rate of YBaCo4O7+δ for thermochemical cycles[J]. J. Mater. Sci. Technol., 2021, 68: 8-15.
Fig. 1. XRD patterns together with Rietveld results for YBaCo4O7+δ synthesized by the three routes: (a) SS sample, (b) CP sample, and (c) BM sample. (d) Schematic illustration of the crystal structure of YBaCo4O7+δ.
Sample name | a [Å] | c [Å] | V [Å3] | Rwp [%] | Rp [%] | S |
---|---|---|---|---|---|---|
Solid state SS | 6.2963(3) | 10.2491(4) | 351.88(3) | 2.3 | 1.6 | 1.9 |
Coprecipitation CP | 6.2988(2) | 10.2623(3) | 352.14(3) | 2.3 | 1.6 | 1.6 |
Ball milling BM | 6.2978(2) | 10.2720(2) | 352.82(3) | 1.6 | 1.3 | 1.3 |
Table 1 Structure parameters of the as-obtained samples.
Sample name | a [Å] | c [Å] | V [Å3] | Rwp [%] | Rp [%] | S |
---|---|---|---|---|---|---|
Solid state SS | 6.2963(3) | 10.2491(4) | 351.88(3) | 2.3 | 1.6 | 1.9 |
Coprecipitation CP | 6.2988(2) | 10.2623(3) | 352.14(3) | 2.3 | 1.6 | 1.6 |
Ball milling BM | 6.2978(2) | 10.2720(2) | 352.82(3) | 1.6 | 1.3 | 1.3 |
Fig. 5. TG curves of YBaCo4O7+δ in flowing O2 gas: (a) from room temperature to 1000 °C with a heating rate of 5 °C/min and (b) up to 500 °C with heating/cooling rates of 5 °C/min. (i) SS sample, (ii) CP sample, and (iii) BM sample.
As prepared sample | Maxium ΔW | OSC μmol-O2/g | Oxygen content δ | Specific surface area/(m2/g) |
---|---|---|---|---|
SS | 1.79 wt% | 558 | 0.64 | 0.4 |
CP | 2.60 wt% | 811 | 0.93 | 1.1 |
BM | 2.89 wt% | 905 | 1.04 | 3.2 |
Table 2 The maximum weight change (ΔW), OSC, oxygen content, and specific surface area for the SS, CP, and BM samples.
As prepared sample | Maxium ΔW | OSC μmol-O2/g | Oxygen content δ | Specific surface area/(m2/g) |
---|---|---|---|---|
SS | 1.79 wt% | 558 | 0.64 | 0.4 |
CP | 2.60 wt% | 811 | 0.93 | 1.1 |
BM | 2.89 wt% | 905 | 1.04 | 3.2 |
Fig. 7. (a) Isothermal TG curves in flowing N2 and O2 at 350 °C for YBaCo4O7+δ synthesized by the three routes (i) SS sample, (ii) CP sample, and (iii) BM sample. (b) Oxygen uptake/release time of the three samples. (c) Isothermal TG curves and related (d) uptake/release time of the BM sample at different operation temperatures.
Fig. 8. (a) Isothermal TG curves recorded for YBaCo4O7+δ synthesized by the three routes (i) SS sample, (ii) CP sample, and (iii) BM sample at 350 °C upon switching the gas flow between N2 and O2 (time interval: 60 min). (b) uptake/release time required for the first cycle; (c) uptake/release time in the fifth cycle for the three samples.
Fig. 9. (a) Isothermal TG curves recorded for YBaCo4O7+δ at 350 °C upon switching the gas flow between N2 and O2 with a time interval of 30 min. (b) the cyclic performance of oxygen release. Solid line: BM sample; Line-symbol: CP sample).
Fig. 10. (a) TG curves of the three YBaCo4O7+δ samples upon temperature swing between 350 °C and 500 °C in flowing O2 gas: (i) SS sample, (ii) CP sample, and (iii) BM sample. (b) Temperature profile.
[1] |
L.P. Ma, H.J. Bart, P. Ning, A. Zhang, G. Wu, Z.Z. Zeng, Chem. Eng. J., 155 (2009), pp. 241-247.
DOI URL |
[2] |
X. Tian, Y.J. Wei, H.B. Zhao, Chem. Eng. J., 334 (2018), pp. 611-618.
DOI URL |
[3] |
J. Wan, J.S. Lin, X.L. Guo, T. Wang, R.X. Zhou, Chem. Eng. J., 368 (2019), pp. 719-729.
DOI URL |
[4] | M. Karppinen, H. Yamauchi, H. Fjellvag, T. Motohashi, PCT/JP2006313436 Int. Patent Appl. filed, 6(June) (2006). |
[5] | M. Karppinen, H. Yamauchi, S. Otani, T. Fujita, T. Motohashi, Y.H. Huang, M. Valkeapaa, H. Fjellvag, Chem. Mater., 88 (2006), p. 490. |
[6] |
T. Motohashi, S. Kadota, H. Fjellvag, M. Karppinen, H. Yamauchi, Mater. Sci. Eng. B, 148 (2008), pp. 196-198.
DOI URL |
[7] | O. Parkkima YBaCoO7+δ and YMnO3+δ Based Oxygen-Storage Materia lsPh.D. Thesis Aalto University (2014). |
[8] |
L. P, X.Y. Chen, Y.D. Li, J.W. Schwank, Catal. Today, 327 (2019), pp. 90-115.
DOI URL |
[9] |
B. Bulfin, J. Vieten, C. Agrafiotis, M. Roeb, C. Sattler, J. Mater. Chem. A, 5 (2017), pp. 18951-18966.
DOI URL |
[10] |
J. Vieten, B. Bulfin, F. Call, M. Lange, M. Schmücker, A. Francke, M. Roeb, C. Sattler, J. Mater. Chem. A, 4 (2016), pp. 13652-13659.
DOI URL |
[11] |
X. Zhu, K. Li, L. Neal, F. Li, ACS Catal., 8 (2018), pp. 8213-8236.
DOI URL |
[12] | K. Świerczek, A. Klimkowicz, K. Nishihara, S. Kobayashi, A. Takasaki, M. Alanizy, S. Kolesnik, B. Dabrowski, S. Seong, J. Kang, Phy. Chem. Chem. Phys., 19 (2018), pp. 19243-19251. |
[13] |
A. Klimkowicz, K. Świerczek, S. Kobayashi, A. Takasaki, W. Allahyani, B. Dabrowski, J. Solid. State. Chem., 258 (2018), pp. 471-476.
DOI URL |
[14] |
X. Huang, C. Ni, J.T.S. Irvine, J. Alloy. Compd., 810 (2019), p. 151865.
DOI URL |
[15] |
T. Motohashi, Y. Hirano, Y. Masubuchi, K. Oshima, T. Setoyama, S. Kikkawa, Chem. Mater., 25 (2013), pp. 372-377.
DOI URL |
[16] |
G. Saito, Y. Kunisada, K. Hayami, T. Nomura, N. Sakaguchi, Chem. Mater., 29 (2016), pp. 648-655.
DOI URL |
[17] |
H. Ikeda, A. Tsuchida, J. Morita, N. Miura, Ind. Eng. Chem. Res., 55 (2016), pp. 6501-6505.
DOI URL |
[18] |
A. Klimkowicz, K. Cichy, O. Chmaissem, B. Dabrowski, B. Poudel, K. Świerczek, K.M. Taddei, A. Takasaki, J. Mater. Chem. A, 7 (2019), pp. 2608-2618.
DOI PMID |
[19] |
Y. Asakura, A. Miyake, M. Otomo, S. Yin, Dalton Trans., 49 (2020), pp. 966-971.
DOI PMID |
[20] |
M. Valldor, M. Andersson, Solid State Sci., 4 (2002), pp. 923-931.
DOI URL |
[21] |
M. Valldor, Solid State Sci., 6 (2004), pp. 251-266.
DOI URL |
[22] |
T. Komiyama, T. Motohashi, Y. Masubuchi, S. Kikkawa, Mater. Res. Bull., 45 (2010), pp. 1527-1532.
DOI URL |
[23] |
S. Kadota, M. K, T. Motohashi, H. Yamauchi, Chem. Mater., 20 (2008), pp. 6378-6381.
DOI URL |
[24] |
Y. Jia, H.J.M. Valkeapaa, H. Yamauchi, M. Karppinen, E.I. Kauppinen, J. Am. Chem. Soc., 131 (2009), pp. 4880-4883.
DOI URL |
[25] |
S. Räsänen, H. Yamauchi, M. Karppinen, Chem. Lett., 37 (2008), pp. 638-639.
DOI URL |
[26] |
B. Zhu, H. Hao, Y. Zhang, J. Jia, X. Hu, J. Rare Earths, 28 (2010), pp. 84-87.
DOI URL |
[27] | O. Parkkima, M. Karppinen, Eur. J. Inorg. Chem., 2014 (2014), pp. 4056-4067. |
[28] |
O. Parkkima, H. Yamauchi, M. Karppinen, Chem. Mater., 25 (2013), pp. 599-604.
DOI URL |
[29] |
K. Zhang, Z. Zhu, R. Ran, Z. Shao, W. Jin, S. Liu, J. Alloy. Compd., 492 (2010), pp. 552-558.
DOI URL |
[30] |
S. Räsänen, T. Motohashi, H. Yamauchi, M. Karppinen, J. Solid. State. Chem., 183 (2010), pp. 692-695.
DOI URL |
[31] |
L. Hou, Q.B. Yu, K. Wang, Z.F. Qi, Q. Qin, T.W. Wu, Energy Sources, Part A, 40 (2018), pp. 2354-2366.
DOI URL |
[32] |
L. Hou, Q.B. Yu, K. Wang, T. Wang, F. Yang, S. Zhang, J. Therm. Anal. Calorim., 137 (2019), pp. 317-325.
DOI URL |
[33] |
F. Izumi, K. Momma, Solid State Phenom., 130 (2007), pp. 15-20.
DOI URL |
[34] |
H. Hao, J. Cui, C. Chen, L. Pan, J. Hu, X. Hu, Solid State Ionics, 177 (2006), pp. 631-637.
DOI URL |
[35] | M. Valkeapää, M. Karppinen, T. Motohashi, R.S. Liu, J.M. Chen, H. Yamauchi, Chem. Lett., 11 (2007), pp. 1368-1369. |
[36] |
D.L. Yang, H.G. Sun, H.X. Lu, Y.Q. Guo, X.J. Li, X. Hu, Supercond. Sci. Technol., 16 (2003), pp. 576-581.
DOI URL |
[37] |
Z.L. Zhu, D.L. Yang, Y.Q. Guo, Q.Q. Liu, Z.S. Gao, X. Hu, Physica C, 383 (2002), pp. 169-174.
DOI URL |
[38] | M. Xu, I. Ermanoski, E.B. Stechel, S. Deng, Chem. Eng. J. (2020), p. 124026. |
[1] | S. Ahmadi H. Arabi A. Shokuhfar. Effects of Multiple Strengthening Treatments on Mechanical Properties and Stability of Nanoscale Precipitated Phases in an Aluminum-Copper-Lithium Alloy [J]. J Mater Sci Technol, 2010, 26(12): 1078-1082. |
[2] | Rongshi CHEN, J.J.Bl, in, M.Sue'ry, Qudong WANG, Enhou HAN. Thermomechanical Processing and Superplasticity of AZ91 Magnesium Alloy [J]. J Mater Sci Technol, 2004, 20(03): 295-297. |
[3] | Juanhua SU, Qiming DONG, Ping LIU, Hejun LI, Buxi KANG. Prediction of Properties in Thermomechanically Treated Cu-Cr-Zr Alloy by an Artificial Neural Network [J]. J Mater Sci Technol, 2003, 19(06): 529-532. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||