J. Mater. Sci. Technol. ›› 2021, Vol. 70: 145-155.DOI: 10.1016/j.jmst.2020.08.053
• Research Article • Previous Articles Next Articles
Jiashun Shi, Suchun Wang, Xin Cheng, Shiqiang Chen*(), Guangzhou Liu*(
)
Received:
2020-04-26
Revised:
2020-08-10
Accepted:
2020-08-11
Published:
2021-04-20
Online:
2021-04-15
Contact:
Shiqiang Chen,Guangzhou Liu
About author:
liuguangzhou@sdu.edu.cn (G. Liu).Jiashun Shi, Suchun Wang, Xin Cheng, Shiqiang Chen, Guangzhou Liu. Constructing zwitterionic nanofiber film for anti-adhesion of marine corrosive microorganisms[J]. J. Mater. Sci. Technol., 2021, 70: 145-155.
Fig. 1. Fabrication process of zwitterionic PAS nanofiber film based AAO template. (a) Electro-polishing, (b) two-step anodization in oxalic acid, (c) enlarging pores in phosphoric acid, (d) vacuum impregnation and free radical polymerization, (e) dehydration in the air, (f) detaching the top gel.
Medium | Composition |
---|---|
Modified LB medium | 10 g tryptone, 5 g yeast extract, and 10 g NaCl in each liter of ASW |
Modified Postgate medium | 2.0 g MgSO4·7H2O, 1.0 g CaSO4·2H2O, 1.0 g NH4Cl, 0.5 g K2HPO4, 5.0 g sodium citrate, 3.5 g sodium lactate, and 1.0 g yeast extract in each liter of ASW |
Guillard F/2 medium | 750 mg NaNO3, 56.5 mg NaH2PO4·2H2O, and 1 mL trace element solution in each liter of ASW |
Table 1 Compositions of the media.
Medium | Composition |
---|---|
Modified LB medium | 10 g tryptone, 5 g yeast extract, and 10 g NaCl in each liter of ASW |
Modified Postgate medium | 2.0 g MgSO4·7H2O, 1.0 g CaSO4·2H2O, 1.0 g NH4Cl, 0.5 g K2HPO4, 5.0 g sodium citrate, 3.5 g sodium lactate, and 1.0 g yeast extract in each liter of ASW |
Guillard F/2 medium | 750 mg NaNO3, 56.5 mg NaH2PO4·2H2O, and 1 mL trace element solution in each liter of ASW |
Fig. 2. EDS spectra of (a) PAA and (b) PAS nanofiber films, (c) FT-IR spectra of PAA and PAS nanofiber films, (d) molecular structures of PAA and PAS.
Fig. 4. Water contact angles of different surfaces. Each point is the average of five measurements on three replicates, and error bars show the standard deviation.
Fig. 5. Growth curves of (a) P. aeruginosa, (b) D. vulgaris and (c) C. muelleri. The cell densities were measured by hemocytometer counting method. The dotted lines divide the growth phase of the microorganisms and the cell concentration in stationary phase is about (a) 1.3 × 109, (b) 1.8 × 108 and (c) 5 × 106 cells mL-1, respectively. Each point is the average of five counts, and error bars show the standard deviation.
Fig. 6. CLSM images of (a) P. aeruginosa, (b) D. vulgaris, (c) C. muelleri on different surfaces: (a1, b1, c1) aluminum, (a2, b2, c2) AAO template, (a3, b3, c3) PAA nanofiber film and (a4, b4, c4) PAS nanofiber film. The green signals are SYBR Green I stained cells which were incubated with the surfaces for 30 min.
Fig. 7. Percentages of adhesion area of (a) P. aeruginosa, (b) D. vulgaris, (c) C. muelleri on different surfaces. The analysis was performed on CLSM images by ImageJ. Each datum is the average of 30 counts, 10 fields of view (0.15 mm2) on each of three replicates, and error bars show the standard deviation.
Fig. 8. SEM images of (a, b) P. aeruginosa, (c, d) D. vulgaris, (e, f) C. muelleri on different surfaces: (a, c, e) aluminum and (b, d, f) PAS nanofiber film.
Wavenumber (cm-1) | Vibration type | Functional type |
---|---|---|
3400 c, 3300 a, b | Stretching vibration of -OH | Hydrocarbons [ |
2950 a, b | Asymmetric stretching vibration of CH2 | Hydrocarbons [ |
1660 a, b, c | Stretching vibration of C = O (amide I) | Proteins [ |
1540 a, b | Stretching vibration of C-N and deformation vibration of N-H (amide II) | Proteins [ |
1450 a | Deformation vibration of CH2 | Hydrocarbons [ |
1400 a | Deformation vibration of -OH | Hydrocarbons [ |
1120 b, c, 1080 a | Stretching vibration of C-O-C | Polysaccharides [ |
630 c | “Fingerprint” zone | Phosphate or sulphate functional groups [ |
Table 2 Characteristic IR bands and main functional groups of EPS. EPS of aP. aeruginosa, bD. vulgaris, and cC. muelleri.
Wavenumber (cm-1) | Vibration type | Functional type |
---|---|---|
3400 c, 3300 a, b | Stretching vibration of -OH | Hydrocarbons [ |
2950 a, b | Asymmetric stretching vibration of CH2 | Hydrocarbons [ |
1660 a, b, c | Stretching vibration of C = O (amide I) | Proteins [ |
1540 a, b | Stretching vibration of C-N and deformation vibration of N-H (amide II) | Proteins [ |
1450 a | Deformation vibration of CH2 | Hydrocarbons [ |
1400 a | Deformation vibration of -OH | Hydrocarbons [ |
1120 b, c, 1080 a | Stretching vibration of C-O-C | Polysaccharides [ |
630 c | “Fingerprint” zone | Phosphate or sulphate functional groups [ |
Fig. 10. SEM images of EPS of (a, b) P. aeruginosa, (c, d) D. vulgaris, (e, f) C. muelleri on the surfaces of (a, c, e) aluminum and (b, d, f) PAS nanofiber film.
Fig. 11. CLSM images of EPS of (a, b) P. aeruginosa, (c, d) D. vulgaris, (e, f) C. muelleri on the surfaces of (a, c, e) aluminum and (b, d, f) PAS nanofiber film; proteins and polysaccharides represented by the green and blue moieties, respectively.
[1] | H. Li, C. Yang, E. Zhou, C. Yang, H. Feng, Z. Jiang, D. Xu, T. Gu, K. Yang, J. Mater, Sci. Technol., 33(2017), pp. 1596-1603. |
[2] | T. Liu, S. Pan, Y. Wang, Z. Guo, W. Wang, Q. Zhao, Z. Zeng, N. Guo, Corros. Sci., 162(2020), Article 108215. |
[3] |
Y. Pu, W. Dou, T. Gu, S. Tang, X. Han, S. Chen, J. Mater. Sci. Technol., 47(2020), pp. 10-19.
DOI URL |
[4] |
T. Gu, R. Jia, T. Unsal, D. Xu, J. Mater. Sci. Technol., 35(2019), pp. 631-636.
DOI URL |
[5] |
J. Jin, G. Wu, Y. Guan, Water Res., 71(2015), pp. 207-218.
DOI URL |
[6] |
T. Liu, Z. Guo, Z. Zeng, N. Guo, Y. Lei, T. Liu, S. Sun, X. Chang, Y. Yin, X. Wang, ACS Appl. Mater. Interfaces, 10(2018), pp. 40317-40327.
DOI URL |
[7] |
G. Sharma, S. Sharma, P. Sharma, D. Chandola, S. Dang, S. Gupta, R. Gabrani, J. Appl. Microbiol., 121(2016), pp. 309-319.
DOI URL |
[8] |
R.D. Monds, G.A. O’Toole, Trends Microbiol., 17(2009), pp. 73-87.
DOI URL |
[9] |
G. Cheng, Z. Zhang, S. Chen, J.D. Bryers, S. Jiang, Biomaterials, 28(2007), pp. 4192-4199.
DOI URL |
[10] |
S.E. Martins, G. Fillmann, A. Lillicrap, K. Thomas, Biofouling, 34(2018), pp. 34-52.
DOI URL |
[11] |
V.R. Regina, H. Sohoel, A.R. Lokanathan, C. Bischoff, P. Kingshott, N.P. Revsbech, R.L. Meyer, ACS Appl. Mater. Interfaces, 4(2012), pp. 5915-5921.
DOI URL |
[12] |
S.E. Kim, C. Zhang, A.A. Advincula, E. Baer, J.K. Pokorski, ACS Appl. Mater. Interfaces, 8(2016), pp. 8928-8938.
DOI URL |
[13] |
S. Chen, L. Li, C. Zhao, J. Zheng, Polymer, 51(2010), pp. 5283-5293.
DOI URL |
[14] |
Z. Zhang, J.A. Finlay, L. Wang, Y. Gao, J.A. Callow, M.E. Callow, S. Jiang, Langmuir, 25(2009), pp. 13516-13521.
DOI URL |
[15] |
Y. Dang, M. Quan, C. Xing, Y. Wang, Y. Gong, J. Mater. Chem. B, 3(2015), pp. 2350-2361.
DOI URL |
[16] |
L. Li, S. Chen, S. Jiang, J. Biomater. Sci. Polym. Ed., 18(2007), pp. 1415-1427.
DOI URL |
[17] |
H.S. Sundaram, X. Han, A.K. Nowinski, J.R. Ella-Menye, C. Wimbish, P. Marek, K. Senecal, S.Y. Jiang, ACS Appl. Mater. Interfaces, 6(2014), pp. 6664-6671.
DOI URL |
[18] |
E. Van-Andel, I. De-Bus, E.J. Tijhaar, M.M. Smulders, H.F. Savelkoul, H. Zuilhof, ACS Appl. Mater. Interfaces, 9(2017), pp. 38211-38221.
DOI URL |
[19] |
S. Jiang, Z. Cao, Adv. Mater., 22(2010), pp. 920-932.
DOI URL |
[20] |
Q. Ye, B. He, Y. Zhang, J. Zhang, S. Liu, F. Zhou, ACS Appl. Mater. Interfaces, 11(2019), pp. 39171-39178.
DOI URL |
[21] |
G. Cheng, G. Li, H. Xue, S. Chen, J.D. Bryers, S. Jiang, Biomaterials, 30(2009), pp. 5234-5240.
DOI URL |
[22] | T. Vladkova, J. Univ. Chem. Technol. Metall., 42(2007), pp. 239-256. |
[23] |
A. Scardino, J. Guenther, R. De-Nys, Biofouling, 24(2008), pp. 45-53.
DOI URL |
[24] |
E.P. Ivanova, J. Hasan, H.K. Webb, G. Gervinskas, S. Juodkazis, V.K. Truong, A.H. Wu, R.N. Lamb, V.A. Baulin, G.S. Watson, J.A. Watson, D.E. Mainwaring, R.J. Crawford, Nat. Commun., 4(2013), p. 2838.
DOI URL |
[25] |
G. Feng, Y. Cheng, S. Wang, L.C. Hsu, Y. Feliz, D.A. Borca-Tasciuc, R.W. Worobo, C.I. Moraru, Biofouling, 30(2014), pp. 1253-1268.
DOI URL |
[26] |
S. Chen, Y. Li, Y.F. Cheng, Sci. Rep., 7(2017), pp. 1-9.
DOI URL |
[27] |
I. Banerjee, R.C. Pangule, R.S. Kane, Adv. Mater., 23(2011), pp. 690-718.
DOI URL |
[28] |
P. Wang, D. Zhang, S. Sun, T. Li, Y. Sun, ACS Appl. Mater. Interfaces, 9(2016), pp. 972-982.
DOI URL |
[29] |
W. Yao, W. Liang, G. Huang, B. Jiang, A. Atrens, F. Pan, J. Mater. Sci. Technol., 52(2020), pp. 100-118.
DOI URL |
[30] |
A. Bai, C. Hu, Y. Yang, C. Lin, Electrochim. Acta, 53(2008), pp. 2258-2264.
DOI URL |
[31] |
S. Ma, M. Scaraggi, D. Wang, X. Wang, Y. Liang, W. Liu, D. Dini, F. Zhou, Adv. Funct. Mater., 25(2015), pp. 7366-7374.
DOI URL |
[32] |
H. Liu, Q. Gong, C. Luo, Y. Liang, X. Kong, C. Wu, P. Feng, Q. Wang, H. Zhang, M.A. Wireko, Chem. Pharm. Bull., 67(2019), pp. 1088-1098.
DOI URL |
[33] |
S. Comte, G. Guibaud, M. Baudu, Enzyme Microb. Technol., 38(2006), pp. 237-245.
DOI URL |
[34] |
M.Y. Chen, D.J. Lee, J.H. Tay, K.Y. Show, Appl. Microbiol. Biotechnol., 75(2007), pp. 467-474.
DOI URL |
[35] | C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods, 9(2012), pp. 671-675. |
[36] |
K. Belbachir, R. Noreen, G. Gouspillou, C. Petibois, Anal. Bioanal. Chem., 395(2009), pp. 829-837.
DOI URL |
[37] |
K.I. Oh, K. Rajesh, J.F. Stanton, C. Baiz, Angew. Chem. Int. Edit., 56(2017), pp. 11375-11379.
DOI URL |
[38] |
P. Muanchan, S. Suzuki, T. Kyotani, H. Ito, Polym. Eng. Sci., 57(2017), pp. 214-223.
DOI URL |
[39] |
J.G. Buijnsters, R. Zhong, N. Tsyntsaru, J.P. Celis, ACS Appl. Mater. Interfaces, 5(2013), pp. 3224-3233.
DOI URL |
[40] |
S. BinAhmed, A. Hasane, Z. Wang, A. Mansurov, Environ. Sci. Technol., 52(2018), pp. 162-172.
DOI URL |
[41] |
S. Bauer, J.A. Finlay, I. Thomé, K. Nolte, S.C. Franco, E. Ralston, G.E. Swain, A.S. Clare, A. Rosenhahn, Langmuir, 32(2016), pp. 5663-5671.
DOI URL |
[42] |
D.P. Bakker, F.M. Huijs, J. de Vries, J.W. Klijnstra, H.J. Busscher, H.C. van der Mei, Colloids Surf. B, 32(2003), pp. 179-190.
DOI URL |
[43] |
A.M. Brzozowska, S. Maassen, R.G.Z. Rong, P.I. Benke, C.S. Lim, E.M. Marzinelli, D. Jańczewski, S.L.M. Teo, G.J. Vancso, ACS Appl. Mater. Interfaces, 9(2017), pp. 17508-17516.
DOI URL |
[44] |
H. Liu, H.H.P. Fang, J. Biotechnol., 95(2002), pp. 249-256.
DOI URL |
[45] |
Y. Li, D. Xu, C. Chen, X. Li, R. Jia, D. Zhang, W. Sand, F. Wang, T. Gu, J. Mater. Sci. Technol., 34(2018), pp. 1713-1718.
DOI URL |
[46] |
O. Orgad, Y. Oren, S.L. Walker, M. Herzberg, Biofouling, 27(2011), pp. 787-798.
DOI URL |
[47] |
I. Thome, S. Bauer, S. Vater, K. Zargiel, J.A. Finlay, M.A. Arpa-Sancet, M. Alles, J.A. Callow, M.E. Callow, G.W. Swain, Biofouling, 30(2014), pp. 1011-1021.
DOI URL |
[48] |
K.Y. Chan, L.C. Xu, H.H.P. Fang, Environ. Sci. Technol., 36(2002), pp. 1720-1727.
DOI URL |
[49] | J. Lv, F. Zhao, J. Feng, Q. Liu, F. Nan, S. Xie, Algal Res., 40(2019), Article 101479. |
[50] | B. Gao, X. Zhu, C. Xu, Q. Yue, W. Li, J. Wei, J. Chem. Technol. Biotechnol., 83(2008), pp. 227-232. |
[51] |
G. Sheng, H. Yu, X. Li, Biotechnol. Adv., 28(2010), pp. 882-894.
DOI URL |
[52] |
F. Secundo, Chem. Soc. Rev., 42(2013), pp. 6250-6261.
DOI URL |
[53] |
C. He, H. Zhang, C. Lin, L. Wang, S. Yuan, Chem. Phys. Lett., 676(2017), pp. 144-149.
DOI URL |
[1] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
[2] | Hanyu Zhao, Yupeng Sun, Lu Yin, Zhao Yuan, Yiliang Lan, Dake Xu, Chunguang Yang, Ke Yang. Improved corrosion resistance and biofilm inhibition ability of copper-bearing 304 stainless steel against oral microaerobic Streptococcus mutans [J]. J. Mater. Sci. Technol., 2021, 66(0): 112-120. |
[3] | Lin Lu, Qianqian Liu. Synergetic effects of photo-oxidation and biodegradation on failure behavior of polyester coating in tropical rain forest atmosphere [J]. J. Mater. Sci. Technol., 2021, 64(0): 195-202. |
[4] | Di Wang, Mahmoud Ramadan, Sith Kumseranee, Suchada Punpruk, Tingyue Gu. Mitigating microbiologically influenced corrosion of an oilfield biofilm consortium on carbon steel in enriched hydrotest fluid using 2,2-dibromo-3-nitrilopropionamide (DBNPA) enhanced by a 14-mer peptide [J]. J. Mater. Sci. Technol., 2020, 57(0): 146-152. |
[5] | Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2020, 47(0): 10-19. |
[6] | Enze Zhou, Jianjun Wang, Masoumeh Moradi, Huabing Li, Dake Xu, Yuntian Lou, Jinheng Luo, Lifeng Li, Yulei Wang, Zhenguo Yang, Fuhui Wang, Jessica A. Smith. Methanogenic archaea and sulfate reducing bacteria induce severe corrosion of steel pipelines after hydrostatic testing [J]. J. Mater. Sci. Technol., 2020, 48(0): 72-83. |
[7] | Yuqiao Dong, Yassir Lekbach, Zhong Li, Dake Xu, Soumya El Abed, Saad Ibnsouda Koraichi, Fuhui Wang. Microbiologically influenced corrosion of 304L stainless steel caused by an alga associated bacterium Halomonas titanicae [J]. J. Mater. Sci. Technol., 2020, 37(0): 200-206. |
[8] | Tingyue Gu, Ru Jia, Tuba Unsal, Dake Xu. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35(4): 631-636. |
[9] | Fuliang Ma, Jinlong Li, Zhixiang Zeng, Yimin Gao. Tribocorrosion behavior in artificial seawater and anti-microbiologically influenced corrosion properties of TiSiN-Cu coating on F690 steel [J]. J. Mater. Sci. Technol., 2019, 35(3): 448-459. |
[10] | Dan Liu, Ru Jia, Dake Xu, Hongying Yang, Ying Zhao, M. saleem Khan, Songtao Huang, Jiankang Wen, Ke Yang, Tingyue Gu. Biofilm inhibition and corrosion resistance of 2205-Cu duplex stainless steel against acid producing bacterium Acetobacter aceti [J]. J. Mater. Sci. Technol., 2019, 35(11): 2494-2502. |
[11] | M. Saleem Khan, Zhong Li, Ke Yang, Dake Xu, Chunguang Yang, Dan Liu, Yassir Lekbach, Enze Zhou, Phuri Kalnaowakul. Microbiologically influenced corrosion of titanium caused by aerobic marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2019, 35(1): 216-222. |
[12] | Dake Xu, Enze Zhou, Ying Zhao, Huabing Li, Zhiyong Liu, Dawei Zhang, Chunguang Yang, Hai Lin, Xiaogang Li, Ke Yang. Enhanced resistance of 2205 Cu-bearing duplex stainless steel towards microbiologically influenced corrosion by marine aerobic Pseudomonas aeruginosa biofilms [J]. J. Mater. Sci. Technol., 2018, 34(8): 1325-1336. |
[13] | Masoumeh Moradi, Zhenlun Song, Tao Xiao. Exopolysaccharide produced by Vibrio neocaledonicus sp. as a green corrosion inhibitor: Production and structural characterization [J]. J. Mater. Sci. Technol., 2018, 34(12): 2447-2457. |
[14] | Xianbo Shi, Wei Yan, Dake Xu, Maocheng Yan, Chunguang Yang, Yiyin Shan, Ke Yang. Microbial corrosion resistance of a novel Cu-bearing pipeline steel [J]. J. Mater. Sci. Technol., 2018, 34(12): 2480-2491. |
[15] | Yingchao Li, Dake Xu, Changfeng Chen, Xiaogang Li, Ru Jia, Dawei Zhang, Wolfgang Sand, Fuhui Wang, Tingyue Gu. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review [J]. J. Mater. Sci. Technol., 2018, 34(10): 1713-1718. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||