J. Mater. Sci. Technol. ›› 2020, Vol. 48: 72-83.DOI: 10.1016/j.jmst.2020.01.055
• Research Article • Previous Articles Next Articles
Enze Zhoua,b, Jianjun Wangb,a, Masoumeh Moradia,b, Huabing Lia,*(), Dake Xua,b,**(
), Yuntian Louc, Jinheng Luod, Lifeng Lid, Yulei Wange, Zhenguo Yangf, Fuhui Wanga,b, Jessica A. Smithg
Received:
2019-12-06
Accepted:
2020-01-31
Published:
2020-07-01
Online:
2020-07-13
Contact:
Huabing Li,Dake Xu
Enze Zhou, Jianjun Wang, Masoumeh Moradi, Huabing Li, Dake Xu, Yuntian Lou, Jinheng Luo, Lifeng Li, Yulei Wang, Zhenguo Yang, Fuhui Wang, Jessica A. Smith. Methanogenic archaea and sulfate reducing bacteria induce severe corrosion of steel pipelines after hydrostatic testing[J]. J. Mater. Sci. Technol., 2020, 48: 72-83.
Composition | Groundwater (GW) | Lake water (LW) | |
---|---|---|---|
Nitrate | mg/L | 0.030 | 0.036 |
Fluoride | mg/L | 0.347 | 0.437 |
Sulfate | mg/L | 44.4 | 236 |
Chloride | mg/L | 84.0 | 0.09 |
Phosphate | mg/L | 1.19 | 0.899 |
Cadmium (Cd) | μg/L | <0.05 | 5.2 |
Iron (Fe) | μg/L | 12.2 | 4.4 × 104 |
Manganese (Mn) | μg/L | 2.3 | 95.6 |
Lead (Pb) | μg/L | 1.1 | <0.09 |
Copper (Cu) | μg/L | 2.2 | 1.65 |
Zinc (Zn) | μg/L | 1.6 | 0.93 |
Molybdenum (Mo) | μg/L | 0.436 | 65.3 |
Aluminum (Al) | μg/L | 36.1 | 3.42 |
Table 1 Chemical composition of groundwater (GW) and untreated lake water (LW) used in this study.
Composition | Groundwater (GW) | Lake water (LW) | |
---|---|---|---|
Nitrate | mg/L | 0.030 | 0.036 |
Fluoride | mg/L | 0.347 | 0.437 |
Sulfate | mg/L | 44.4 | 236 |
Chloride | mg/L | 84.0 | 0.09 |
Phosphate | mg/L | 1.19 | 0.899 |
Cadmium (Cd) | μg/L | <0.05 | 5.2 |
Iron (Fe) | μg/L | 12.2 | 4.4 × 104 |
Manganese (Mn) | μg/L | 2.3 | 95.6 |
Lead (Pb) | μg/L | 1.1 | <0.09 |
Copper (Cu) | μg/L | 2.2 | 1.65 |
Zinc (Zn) | μg/L | 1.6 | 0.93 |
Molybdenum (Mo) | μg/L | 0.436 | 65.3 |
Aluminum (Al) | μg/L | 36.1 | 3.42 |
Fig. 2. FESEM images of X52 steel surfaces after (a) exposing to LW for 14 days, (b) exposing to LW for 30 days, (c) exposing to GW for 14 days, (d) exposing to GW for 30 days, (e) removal of the biofilm from coupons exposed to LW for 14 days, and (f) removal of the biofilm from coupons exposed to LW for 30 days.
C | N | O | P | S | Na | Cl | Cr | Mn | Fe | |
---|---|---|---|---|---|---|---|---|---|---|
LW-14 days | 18.34 | 3.10 | 35.93 | 8.83 | 2.47 | 4.43 | — | — | 0.22 | 26.68 |
LW-30 days | 33.43 | 5.66 | 27.74 | 1.62 | 7.32 | 1.18 | — | — | 0.18 | 22.87 |
GW-14 days | 11.09 | 0.02 | 9.60 | 0.04 | 0.01 | — | 0.48 | 0.01 | 1.13 | 77.61 |
GW-30 days | 7.69 | 0.03 | 5.11 | 0.30 | — | — | — | 0.30 | 1.00 | 85.56 |
LW washed- 14 days | 5.75 | — | 1.92 | — | — | — | — | — | 1.26 | 91.07 |
LW washed- 30 days | 4.41 | — | 2.66 | — | — | — | — | — | — | 92.93 |
Table 2 EDS analysis (wt.%) of exposed surfaces of the X52 steel coupons after exposure to LW or GW after 14 or 30 days.
C | N | O | P | S | Na | Cl | Cr | Mn | Fe | |
---|---|---|---|---|---|---|---|---|---|---|
LW-14 days | 18.34 | 3.10 | 35.93 | 8.83 | 2.47 | 4.43 | — | — | 0.22 | 26.68 |
LW-30 days | 33.43 | 5.66 | 27.74 | 1.62 | 7.32 | 1.18 | — | — | 0.18 | 22.87 |
GW-14 days | 11.09 | 0.02 | 9.60 | 0.04 | 0.01 | — | 0.48 | 0.01 | 1.13 | 77.61 |
GW-30 days | 7.69 | 0.03 | 5.11 | 0.30 | — | — | — | 0.30 | 1.00 | 85.56 |
LW washed- 14 days | 5.75 | — | 1.92 | — | — | — | — | — | 1.26 | 91.07 |
LW washed- 30 days | 4.41 | — | 2.66 | — | — | — | — | — | — | 92.93 |
Elements | Fe | Cr | P | Cl | S | N | O | C |
---|---|---|---|---|---|---|---|---|
14 days | ||||||||
LW | 23.57 | — | 1.17 | 0.70 | 0.93 | 2.25 | 42.72 | 28.66 |
GW | 27.10 | 0.88 | — | — | — | — | 51.60 | 20.42 |
30 days | ||||||||
LW | 11.21 | — | 1.72 | — | 9.92 | 7.85 | 10.36 | 58.94 |
GW | 14.17 | — | — | — | — | 10.22 | 36.45 | 39.16 |
Table 3 Element atomic percentages (%) measured by X-ray photoelectron spectroscopy (XPS) on coupons exposed to LW or GW for 14 and 30 days.
Elements | Fe | Cr | P | Cl | S | N | O | C |
---|---|---|---|---|---|---|---|---|
14 days | ||||||||
LW | 23.57 | — | 1.17 | 0.70 | 0.93 | 2.25 | 42.72 | 28.66 |
GW | 27.10 | 0.88 | — | — | — | — | 51.60 | 20.42 |
30 days | ||||||||
LW | 11.21 | — | 1.72 | — | 9.92 | 7.85 | 10.36 | 58.94 |
GW | 14.17 | — | — | — | — | 10.22 | 36.45 | 39.16 |
Fig. 3. (a) S 2p peak of X52 steel coupon surfaces after exposure to LW solution for 30 days, (b) Fe 2p3/2 peak of X52 steel coupon surfaces after exposure to LW solution for 30 days, and (c) Fe 2p3/2 peak of X52 steel coupon surfaces after exposure to GW solution for 30 days.
Fig. 4. (a) Variation in pH of GW and LW after 14 and 30 days of laboratory hydrostatic testing. (b) Weight loss of triplicate X52 steel coupons after exposure to GW or LW after 14 and 30 days.
Fig. 5. CLSM images of X52 steel coupon surfaces after exposing in (a, b) LW solution for 14 and 30 days, or (c, d) after exposing in GW solution for 14 and 30 days.
Fig. 6. (a) Variation in OCP with exposure time, and polarization curves of X52 steel coupons after exposure to LW or GW solutions for (b) 14 and (c) 30 days.
icorr (A/cm2) | Ecorr (V) vs. SCE | |
---|---|---|
14 days | ||
GW | 2.58 × 10-6 | -0.719 |
LW | 1.74 × 10-5 | -0.738 |
30 days | ||
GW | 6.56 × 10-6 | -0.903 |
LW | 1.48 × 10-5 | -0.848 |
Table 4 Corrosion parameters obtained from dynamic potential polarization curves of X52 steel coupons exposed to GW or LW for 14 and 30 days, respectively.
icorr (A/cm2) | Ecorr (V) vs. SCE | |
---|---|---|
14 days | ||
GW | 2.58 × 10-6 | -0.719 |
LW | 1.74 × 10-5 | -0.738 |
30 days | ||
GW | 6.56 × 10-6 | -0.903 |
LW | 1.48 × 10-5 | -0.848 |
Fig. 8. Equivalent circuits used for simulating the impedance spectra (Fig. 7) of X52 steel coupons exposed in (a) GW for 30 days as well as LW for the first 20 days, and (b) LW solution after 20 days. Rs and Rct display the solution resistance and charge transfer resistance, respectively. Rf represents the film resistance, Qf represents the constant phase element of the surface film, Qd1 represents the constant-phase element, and W is Warburg element.
Fig. 10. Relative distribution of (a) bacterial and (b) archaeal 16S rRNA gene sequences at the genus level. LW1b represents microorganisms in biofilms attached to X52 steel coupon surfaces after exposure to LW without added culture media; LW2b represents microorganisms in biofilms attached to X52 steel coupon surfaces after exposure to LW with added 2216E culture media.
Fig. 11. Live/dead CLSM 3-D images of biofilms and biofilm thickness from (a) X52 steel exposed to LW1 for 14 days, (b) X52 steel exposed to LW2 for 14 days, (c) X52 steel exposed to LW1 for 30 days, and (d) X52 steel exposed in LW2 for 30 days. LW1 represents incubation in lake water alone, and LW2 represent incubation in lake water with added 2216E culture media.
[1] | R.I. Ray, J.S. Lee, B.J. Little, T.L. Gerke, Mater. Corros. 61 (2010) 993-999. |
[2] |
P. Sarin, V.L. Snoeyink, J. Bebee, K.K. Jim, M.A. Beckett, W.M. Kriven, J.A. Clement, Water Res. 38 (2004) 1259-1269.
URL PMID |
[3] |
C.C.C.R. De Carvalho, Front. Mar. Sci. 5 (2018), http://dx.doi.org/10.3389/fmars.2018.00126.
URL PMID |
[4] |
I. Neria-González, E.T. Wang, F. Ramírez, J.M. Romero, C. Hernández-Rodríguez, Anaerobe 12 ( 2006) 122-133.
URL PMID |
[5] | W. Liu, Eng. Fail. Anal. 42 (2014) 109-120. |
[6] | S. Bhat, B. Kumar, S.R. Prasad, M.V. Katarki, Mater. Perform. 50 (2011) 50-54. |
[7] | R. Xiao, G. Xiao, B. Huang, J. Feng, Q. Wang, Eng. Fail. Anal. 68 (2016) 113-121. |
[8] | A. Darwin, K. Annadorai, K. Heidersbach, Corrosion 87 ( 2010) 155-156. |
[9] |
T.R. Lenhart, K.E. Duncan, I.B. Beech, J.A. Sunner, W. Smith, V. Bonifay, B. Biri, J.M. Suflita, Biofouling 30 ( 2014) 823-835.
DOI URL |
[10] |
K.E. Duncan, L.M. Gieg, V.A. Parisi, R.S. Tanner, S.G. Tringe, J. Bristow, J.M. Suflita, Environ. Sci. Technol. 43 (2009) 7977-7984.
URL PMID |
[11] | K. Zhao, T. Gu, I. Cruz, A. Kopliku, NACE International, 2010. |
[12] | R. Prasad, US Patent No. 6815208 B2, 2004. |
[13] |
J.T. Rosnes, T. Torsvik, T. Lien, Appl. Environ. Microbiol. 57 (1991) 2302-2307.
URL PMID |
[14] | P.F. Sanders, UK Corrosion 98 ( 1998) 15. |
[15] | R. Jia, D. Yang, H.B. Abd Rahman, T. Gu, Corros. Sci. 139 (2018) 301-308. |
[16] | M. Lv, M. Du, Rev. Environ. Sci. Biotechnol. 17 (2018) 431-446. |
[17] | R. Jia, D. Yang, H.H. Al-Mahamedh, T. Gu, Ind. Eng. Chem. Res. 56 (2017) 7640-7649. |
[18] | R.B. Eckert, T.L. Skovhus, Int. Biodeterior. Biodegrad. 126 (2018) 169-176. |
[19] |
D. Xu, Y. Li, F. Song, T. Gu, Corros. Sci. 77 (2013) 385-390.
DOI URL |
[20] | D. Xu, Y. Li, T. Gu, Bioelectrochemistry 110 ( 2016) 52-58. |
[21] | R. Jia, T. Unsal, D. Xu, Y. Lekbach, T. Gu, Int. Biodeterior. Biodegrad. 137 (2019) 42-58. |
[22] |
F.L. Heggendorn, A.G.M. Fraga, D. de C. Ferreira, L.S. Gonc¸ alves, V. de O. F. Lione, M. T. S. Lutterbach, Int. J. Dent. 2018 (2018), 8303450.
URL PMID |
[23] |
L. Daniels, N. Belay, B.S. Rajagopal, P.J. Weimer, Science 237 ( 1987) 509-511.
URL PMID |
[24] | J. Larsen, K. Rasmussen, H. Pedersen, K. Sørensen, T. Lundgaard, T.L. Skovhus, NACE International, 2010. |
[25] |
H.S. Park, I. Chatterjee, X. Dong, S.H. Wang, C.W. Sensen, S.M. Caffrey, T.R. Jack, J. Boivin, G. Voordouw, Appl. Environ. Microbiol. 77 (2011) 6908-6917.
URL PMID |
[26] | P.A.P. Jaramillo, O. Snoeyenbos-West, C. Loescher, B. Thamdrup, A.E. Rotaru, , BioRxiv, 2019,530386. |
[27] |
R. Jia, D. Yang, D. Xu, T. Gu, Front. Microbiol. 8 (2017) 2335.
URL PMID |
[28] | H. Wan, D. Song, D. Zhang, C. Du, D. Xu, Z. Liu, D. Ding, X. Li, Bioelectrochemistry 121 ( 2018) 18-26. |
[29] |
D. Xu, Y. Li, F. Song, T. Gu, Corros. Sci. 77 (2013) 385-390.
DOI URL |
[30] | D. Liu, R. Jia, D. Xu, H. Yang, Y. Zhao, M.S. Khan, S. Huang, J. Wen, K. Yang, T. Gu, J. Mater, Sci. Technol. 35 (2019) 2494-2502. |
[31] | Y. Dong, Y. Lekbach, Z. Li, D. Xu, S. El Abed, S.I. Koraichi, F. Wang, J. Mater, Sci. Technol. 37 (2020) 200-206. |
[32] |
H.Y. Tang, D.E. Holmes, T. Ueki, P.A. Palacios, D.R. Lovley, MBio 10 ( 2019), e00303-19.
URL PMID |
[33] |
J. Philips, N.V. den Driessche, K.D. Paepe, A. Prévoteau, J.A. Gralnick, J.B.A. Arends, K. Rabaey, Appl. Environ. Microbiol. 84 (2018) e01154-18.
URL PMID |
[34] | M.S. khan, Z. Li, K. Yang, D. Xu, C. Yang, D. Liu, Y. Lekbach, E. Zhou, P. Kalnaowakul, J. Mater, Sci. Technol. 35 (2019) 216-222. |
[35] | H. Li, E. Zhou, Y. Ren, D. Zhang, D. Xu, C. Yang, H. Feng, Z. Jiang, X. Li, T. Gu, K. Yang, Corros. Sci. 111 (2016) 811-821. |
[36] |
H. Li, E. Zhou, D. Zhang, D. Xu, J. Xia, C. Yang, H. Feng, Z. Jiang, X. Li, T. Gu, K. Yang, Sci. Rep. 6 (2016) 20190.
DOI URL PMID |
[37] | S.J. Yuan, A.M.F. Choong, S.O. Pehkonen, Corros. Sci. 49 (2007) 4352-4385. |
[38] | Y. Jin, Z. Li, E. Zhou, Y. Lekbach, D. Xu, S. Jiang, F. Wang, Electrochim. Acta 316 ( 2019) 93-104. |
[39] | E. Zhou, H. Li, C. Yang, J. Wang, D. Xu, D. Zhang, T. Gu, Int. Biodeterior. Biodegrad. 127 (2018) 1-9. |
[40] |
D. Xu, J. Xia, E. Zhou, D. Zhang, H. Li, C. Yang, Q. Li, H. Lin, X. Li, K. Yang, Bioelectrochemistry 113 ( 2017) 1-8.
URL PMID |
[41] |
F. Yang, B. Shi, Y. Bai, H. Sun, D.A. Lytle, D. Wang, Water Res. 59 (2014) 46-57.
URL PMID |
[42] | C. Okoro, S. Smith, L. Chiejina, R. Lumactud, D. An, H.S. Park, J. Voordouw, B.P. Lomans, G. Voordouw, J. Ind, Microbiol. Biotechnol. 41 (2014) 665-678. |
[43] | M.A. Javed, P.R. Stoddart, E.A. Palombo, S.L. McArthur, S.A. Wade, Corros. Sci. 86 (2014) 149-158. |
[44] | H. Feng, H.B. Li, Z.H. Jiang, T. Zhang, N. Dong, S.C. Zhang, P.D. Han, S. Zhao, Z.G. Chen, Corros. Sci. 158 (2019), 108081. |
[45] | H. Feng, Z.H. Jiang, H.B. Li, P.C. Lu, S.C. Zhang, H.C. Zhu, B.B. Zhang, T. Zhang, D.K. Xu, Z.G. Chen, Corros. Sci. 144 (2018) 288-300. |
[46] | D.E. Fouts, S. Szpakowshi, J. Purushe, M. Torralba, R.C. Waterman, M.D. MacNeil, L.J. Alexander, K.E. Nelson, PLoS One 7 ( 2012), e48289. |
[47] |
M. Chen, X.H. Li, Y.H. He, N. Song, H.Y. Cai, C. Wang, Y.T. Li, H.Y. Chu, L.R. Krumholz, H.L. Jiang, Water Res. 96 (2016) 94-104.
DOI URL PMID |
[48] | H. Liu, T. Gu, M. Asif, G. Zhang, H. Liu, Corros. Sci. 114 (2017) 102-111. |
[49] | Z. Zhang, Z. Lei, X. He, Z. Zhang, Y. Yang, N. Sugiura, J. Hazard, Mater. 163 (2009) 1090-1095. |
[50] |
C.D. Parker, Nature 159 ( 1947) 439-440.
DOI URL PMID |
[51] |
A.P. Harrison, Annu. Rev. Microbiol. 38 (1984) 265-292.
DOI URL PMID |
[52] |
S. Li, Y. Zhang, J. Liu, M. Yu, Acta Phys.-Chim. Sin. 24 (2008) 1553-1557.
DOI URL |
[53] |
X. Liu, J. Xu, J. Huang, M. Huang, T. Wang, S. Bao, W. Tang, T. Fang, RSC Adv. 9 (2019) 3285-3293.
DOI URL |
[54] |
H.T. Dinh, J. Kuever, M. Mußmann, A.W. Hassel, M. Stratmann, F. Widdel, Nature 427 ( 2004) 829-832.
DOI URL PMID |
[55] | S. Hiromoto, Metals for Biomedical Devices, Woodhead Publishing, Cambridge, 2010, pp. 99-121. |
[56] |
A.L. Neal, S. Techkarnjanaruk, A. Dohnalkova, D. McCready, B.M. Peyton, G.G. Geesey, Geochim. Cosmochim. Acta 65 ( 2001) 223-235.
DOI URL |
[57] |
G. Chen, C.R. Clayton, J. Electrochem. Soc. 144 (1997) 3140-3146.
DOI URL |
[58] |
J. Duan, B. Hou, Z. Yu, Mat. Sci. Eng. C 26 ( 2006) 624-629.
DOI URL |
[59] |
R.H. Jung, H. Tsuchiya, S. Fujimoto, Corros. Sci. 58 (2012) 62-68.
DOI URL |
[60] |
A.N. Buckley, R. Woods, Appl. Surf. Sci. 27 (1987) 437-452.
DOI URL |
[61] |
S.J. Yuan, S.O. Pehkonen, Colloids Surf. B Biointerfaces 59 ( 2007) 87-99.
URL PMID |
[62] |
P. Bai, H. Zhao, S. Zheng, C. Chen, Corros. Sci. 93 (2015) 109-119.
DOI URL |
[63] |
S. Yuan, B. Liang, Y. Zhao, S.O. Pehkonen, Corros. Sci. 74 (2013) 353-366.
DOI URL |
[64] |
J.L. Junta-Rosso, M.F. Hochella, Geochim. Cosmochim. Acta 60 ( 1996) 305-314.
DOI URL |
[65] |
D. Enning, J. Garrelfs, Appl. Environ. Microbiol. 80 (2014) 1226-1236.
DOI URL PMID |
[66] |
G.H. Booth, L. Elford, D.S. Wakerley, Br. Corros. J. 3 (1968) 242-245.
DOI URL |
[67] |
R.A. King, J.D.A. Miller, J.S. Smith, Br. Corros. J. 8 (1973) 137-141.
DOI URL |
[68] |
I.A. Davidova, K.E. Duncan, B.M. Perez-Ibarra, J.M. Suflita, Environ. Microbiol. 14 (2012) 1762-1771.
URL PMID |
[69] |
R. Jia, J.L. Tan, P. Jin, D.J. Blackwood, D. Xu, T. Gu, Corros. Sci. 130 (2018) 1-11.
DOI URL |
[70] | T. Gu, D. Xu, NACE International, 2013. |
[71] | T. Gu, K. Zhao, S. Nesic, NACE International, 2009. |
[72] |
D. Xu, T. Gu, Int. Biodeterior. Biodegrad. 91 (2014) 74-81.
DOI URL |
[73] | D. Xu, T. Gu, NACE International, 2011. |
[74] |
J.L. Tan, P.C. Goh, D.J. Blackwood, Corros. Sci. 119 (2017) 102-111.
DOI URL |
[75] |
J. Wang, B. Hou, J. Xiang, X. Chen, T. Gu, H. Liu, Corros. Sci. 150 (2019) 296-308.
DOI URL |
[76] |
P. Li, Y. Zhao, Y. Liu, Y. Zhao, D. Xu, C. Yang, T. Zhang, T. Gu, K. Yang, J. Mater, Sci. Technol. 33 (2017) 723-727.
DOI URL |
[77] |
C. Ruan, L. Yang, Y. Li, Anal. Chem. 74 (2002) 4814-4820.
DOI URL PMID |
[78] |
A. Dheilly, I. Linossier, A. Darchen, D. Hadjiev, C. Corbel, V. Alonso, Appl. Microbiol. Biotechnol. 79 (2008) 157-164.
DOI URL PMID |
[79] |
H. Huang, J. Tian, G. Zhang, Z. Pan, Mater. Chem. Phys. 181 (2016) 312-320.
DOI URL |
[80] |
K. Yin, H. Liu, Y.F. Cheng, Corros. Sci. 145 (2018) 271-282.
DOI URL |
[81] |
H. Liu, T. Gu, M. Asif, G. Zhang, H. Liu, Corros. Sci. 114 (2017) 102-111.
DOI URL |
[82] |
H. Zhang, Y. Tian, J. Wan, P. Zhao, Appl. Surf. Sci. 357 (2015) 236-247.
DOI URL |
[83] |
P. Zhang, D. Xu, Y. Li, Y. Ke, T. Gu, Bioelectrochemistry 101 ( 2015) 14-21.
DOI URL PMID |
[84] |
H. Liu, C. Fu, T. Gu, G. Zhang, Y. Lv, H. Wang, H. Liu, Corros. Sci. 100 (2015) 484-495.
DOI URL |
[85] |
H. Liu, D. Xu, K. Yang, H. Liu, Y.F. Cheng, Corros. Sci. 132 (2018) 46-55.
DOI URL |
[86] |
H. Liu, T. Gu, G. Zhang, H. Liu, Y.F. Cheng, Corros. Sci. 136 (2018) 47-59.
DOI URL |
[87] | H. Liu, Y.F. Cheng, Electrochim. Acta 266 ( 2018) 312-325. |
[88] | H. Liu, X. Zhong, H. Liu, Y.F. Cheng, Electrochem. commun. 90 (2018) 1-5. |
[89] | R. Jia, D. Yang, J. Xu, D. Xu, T. Gu, Corros. Sci. 127 (2017) 1-9. |
[90] |
S. Ghafari, M. Hasan, M.K. Aroua, Bioresour. Technol. 99 (2008) 3965-3974.
DOI URL PMID |
[91] |
L. Saiman, Y. Chen, S. Tabibi, P. San Gabriel, J. Zhou, Z. Liu, L. Lai, S. Whittier, J. Clin. Microbiol. 39 (2001) 3942-3945.
DOI URL PMID |
[92] | A. AbdSharad, G. Usup, F.K. Sahrani, A. Ahmad, K. Ibrahim, K.Hj. Badri, M.H.Hj. Jumali, M.S.M. Noorani, N. Ibrahim, N.H.A. Rasol, W.Z.W. Yaacob, AIP Conf. Proc. 1784 (2016), 020010. |
[93] | J. Yang, J. Shao, L. Wu, Y. Li, X. Zhao, S. Wang, D. Sun, J. Sun, Int. J. Electrochem. Sci. ( 2019) 9193-9205. |
[94] | A.E. Rotaru, P. Malla Shrestha, F. Liu, M. Shrestha, D. Shrestha, M. Embree, K. Zengler, C. Wardman, K.P. Nevin, D.R. Lovley, Energy Environ. Sci. 7 (2014) 408-415. |
[95] |
A.E. Rotaru, P.M. Shrestha, F. Liu, B. Markovaite, S. Chen, K.P. Nevin, D.R. Lovley, Appl. Environ. Microbiol. 80 (2014) 4599-4605.
DOI URL PMID |
[96] |
K.R. Sowers, S.F. Baron, J.G. Ferry, Appl. Environ. Microbiol. 47 (1984) 971-978.
URL PMID |
[97] |
T.J. Lyimo, A. Pol, H.J. Op den Camp, H.R. Harhangi, G.D. Vogels, Int. J. Syst. Evol. Microbiol. 50 (2000) 171-178.
URL PMID |
[98] |
S. Shimizu, R. Upadhye, Y. Ishijima, T. Naganuma, Int. J. Syst. Evol. Microbiol. 61 (2011) 2503-2507.
DOI URL PMID |
[99] |
D.E. Holmes, T. Ueki, H.Y. Tang, J. Zhou, J.A. Smith, G. Chaput, D.R. Lovley, MBio 10 ( 2019) e00789-19.
DOI URL PMID |
[100] |
R. Boopathy, L. Daniels, Appl. Environ. Microbiol. 57 (1991) 2104-2108.
URL PMID |
[1] | Xinhua Wang, Lin Fan, Kangkang Ding, Likun Xu, Weimin Guo, Jian Hou, Tigang Duan. Pitting corrosion of 2Cr13 stainless steel in deep-sea environment [J]. J. Mater. Sci. Technol., 2021, 64(0): 187-194. |
[2] | Lin Lu, Qianqian Liu. Synergetic effects of photo-oxidation and biodegradation on failure behavior of polyester coating in tropical rain forest atmosphere [J]. J. Mater. Sci. Technol., 2021, 64(0): 195-202. |
[3] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
[4] | Jiashun Shi, Suchun Wang, Xin Cheng, Shiqiang Chen, Guangzhou Liu. Constructing zwitterionic nanofiber film for anti-adhesion of marine corrosive microorganisms [J]. J. Mater. Sci. Technol., 2021, 70(0): 145-155. |
[5] | Fangqiang Ning, Jibo Tan, Ziyu Zhang, Xinqiang Wu, Xiang Wang, En-Hou Han, Wei Ke. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66(0): 163-176. |
[6] | Hanyu Zhao, Yupeng Sun, Lu Yin, Zhao Yuan, Yiliang Lan, Dake Xu, Chunguang Yang, Ke Yang. Improved corrosion resistance and biofilm inhibition ability of copper-bearing 304 stainless steel against oral microaerobic Streptococcus mutans [J]. J. Mater. Sci. Technol., 2021, 66(0): 112-120. |
[7] | Hongtao Zeng, Yong Yang, Minhang Zeng, Moucheng Li. Effect of dissolved oxygen on electrochemical corrosion behavior of 2205 duplex stainless steel in hot concentrated seawater [J]. J. Mater. Sci. Technol., 2021, 66(0): 177-185. |
[8] | Zhuowei Tan, Liuyang Yang, Dalei Zhang, Zhenbo Wang, Frank Cheng, Mingyang Zhang, Youhai Jin. Development mechanism of internal local corrosion of X80 pipeline steel [J]. J. Mater. Sci. Technol., 2020, 49(0): 186-201. |
[9] | Shidong Wang, Lyndon Lamborn, Karina Chevil, Erwin Gamboa, Weixing Chen. Near-neutral pH corrosion of mill-scaled X-65 pipeline steel with paint primer [J]. J. Mater. Sci. Technol., 2020, 49(0): 166-178. |
[10] | Zhangweijia Qiu, Zhengkun Li, Huameng Fu, Hongwei Zhang, Zhengwang Zhu, Aimin Wang, Hong Li, Long Zhang, Haifeng Zhang. Corrosion mechanisms of Zr-based bulk metallic glass in NaF and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 46(0): 33-43. |
[11] | Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2020, 47(0): 10-19. |
[12] | S.G. Wang, M. Sun, S.Y. Liu, X. Liu, Y.H. Xu, C.B. Gong, K. Long, Z.D. Zhang. Synchronous optimization of strengths, ductility and corrosion resistances of bulk nanocrystalline 304 stainless steel [J]. J. Mater. Sci. Technol., 2020, 37(0): 161-172. |
[13] | Yuqiao Dong, Yassir Lekbach, Zhong Li, Dake Xu, Soumya El Abed, Saad Ibnsouda Koraichi, Fuhui Wang. Microbiologically influenced corrosion of 304L stainless steel caused by an alga associated bacterium Halomonas titanicae [J]. J. Mater. Sci. Technol., 2020, 37(0): 200-206. |
[14] | Fang Guan, Jizhou Duan, Xiaofan Zhai, Nan Wang, Jie Zhang, Dongzhu Lu, Baorong Hou. Interaction between sulfate-reducing bacteria and aluminum alloys—Corrosion mechanisms of 5052 and Al-Zn-In-Cd aluminum alloys [J]. J. Mater. Sci. Technol., 2020, 36(0): 55-64. |
[15] | Di Wang, Mahmoud Ramadan, Sith Kumseranee, Suchada Punpruk, Tingyue Gu. Mitigating microbiologically influenced corrosion of an oilfield biofilm consortium on carbon steel in enriched hydrotest fluid using 2,2-dibromo-3-nitrilopropionamide (DBNPA) enhanced by a 14-mer peptide [J]. J. Mater. Sci. Technol., 2020, 57(0): 146-152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||