Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 49 Issue (0): 186-201    DOI: 10.1016/j.jmst.2019.10.023
Research Article Current Issue | Archive | Adv Search |
Development mechanism of internal local corrosion of X80 pipeline steel
Zhuowei Tana, Liuyang Yangb, Dalei Zhangb,*(), Zhenbo Wanga,*(), Frank Chengc, Mingyang Zhangd, Youhai Jina
a China University of Petroleum (East China), 266580, Shandong, China
b School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Shandong, China
c University of Calgary, Calgary, AB CAN, T2N 1N4, Canada
d School of Thermal Engineering, Shandong Jianzhu University, 250101, Shandong, China
Download:  HTML  PDF(15386KB) 
Export:  BibTeX | EndNote (RIS)      

The occurrence and development mechanism of internal local corrosion has always been a controversial topic, and especially under flow conditions. In this paper, an improved high shear force loop was experimentally used, and local flow field is induced by simulating corrosion defects on the surface of X80 pipeline steel specimens. The characteristics of corrosion products deposited on the surface of specimens in CO2-saturated NACE solution were investigated by means of electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectrometry (EDS). The 3D micromorphology of the corrosion test surface after remove the corrosion scale used to measure the size of localized corrosion pit. Under the influence of local defects, the wall shear stress (WSS) and turbulent kinetic energy of local flow fields enhanced significantly, and pressure fluctuations in local flow field were induced. The results showed that the characteristics of surface corrosion products varied with flow velocity. The corrosion scales formed in various regions of specimens with defects exhibited different surface micro-morphologies and chemical compositions. Overall, these data offer new perspectives for better understanding the mechanisms behind local corrosion.

Key words:  X80 pipeline steel      CO2corrosion      Flow conditions      Surface defects      Wall shear stress      Cavitation     
Received:  14 May 2019     
Corresponding Authors:  Dalei Zhang,Zhenbo Wang     E-mail:;

Cite this article: 

Zhuowei Tan, Liuyang Yang, Dalei Zhang, Zhenbo Wang, Frank Cheng, Mingyang Zhang, Youhai Jin. Development mechanism of internal local corrosion of X80 pipeline steel. J. Mater. Sci. Technol., 2020, 49(0): 186-201.

URL:     OR

X80 pipeline steel (balance Fe)
Mn Si C Cr S P Ni Ti Nb Mo V
1.83 0.28 0.063 0.03 0.0006 0.011 0.03 0.016 0.061 0.22 0.059
Table 1  Chemical composition of X80 pipeline steel (wt.%).
Fig. 1.  Specification and flow orientation of SAD: left: side view, right: top view, unit: mm.
Fig. 2.  Schematic diagram of the experimental system: 1) gas-pressure meter, 2) gas master valve, 3) gas storage tank, 4) gas flowmeter, 5) gas flow regulating valve, 6) cooling pipe outlet, 7) cooling pipe inlet, 8) solution tank, 9) corrosion resisting centrifugal pump,10) flow master valve, 11) electrochemical workstation, 12) data acquisition computer, 13) fluid buffer box, 14) test channel, 15) testing electrode, 16) fluid distribution box, 17) vertical rotor flow meter, 18) flow control valve, and 19) return valve.
Fig. 3.  Details of test channel.
Fig. 4.  Configuration of the electrodes: 1) epoxy resin, 2) counter electrode, 3) reference electrode, and 4) working electrode (units are in mm).
Fig. 5.  Distinct geometrical regions of the corrosion surface used for SEM analysis (units are in mm, side view).
Fig. 6.  EIS spectra: (a) PS at v = 3 m/s, (b) SAD at v = 3 m/s, (c) SAD at v = 5 m/s, (d) SAD at v = 7 m/s. Left: Nyquist plots; Right: Bode and |Z| plots.
Fig. 7.  Electrochemical equivalent circuit obtained by fitting the experimental impedance data.
Time (h) Rs
(Ω cm2)
-1 cm-2 s-n)
ndl Rct
(Ω cm2)
-1 cm-2 s-n)
npf Rpf
(Ω cm2)
Ave err (%)
1 11.06 2.6E-4 0.8223 284.1 4.82
3 11.04 2.9E-4 0.8003 275.5 5.16
6 11.24 4.1E-4 0.7684 269.3 4.04
7 11.36 6.9E-5 1 39.89 4.8E-4 0.8614 214.2 8.31
10 11.31 6.9E-5 1 38.95 5.3E-4 0.8570 208.7 8.92
13 11.05 7.4E-5 1 36.29 6.5E-4 0.8529 188.7 9.14
16 11.37 7.6E-5 1 35.87 7.3E-4 0.8515 183.9 9.01
Table 2  Equivalent circuit fitting of EIS data of the PS, v = 3 m/s.
Fig. 8.  SEM views of surface morphologies of the PS after corrosion at v = 3 m/s.
Fig. 9.  XRD patterns of the corrosion scales: (a) PS after corrosion at v = 3 m/s, (b) SAD after corrosion at v = 5 m/s.
Time(h) Rs
(Ω cm2)
-1 cm-2 s-n)
ndl Rct
(Ω cm2)
(H cm-2)
(Ω cm2)
Ave err (%)
1 11.57 3.7E-4 0.9292 59.97 119.0 214.3 6.32
4 11.73 5.4E-4 0.9775 31.25 87.51 80.83 7.98
7 11.74 8.3E-4 1 21.98 63.51 67.07 4.67
10 11.59 1.1E-3 1 19.53 71.10 66.66 7.17
13 11.07 2.4E-3 1 16.29 91.98 97.67 6.52
16 11.42 4.5E-3 1 11.92 22.26 44.17 6.04
Table 3  Equivalent circuit fitting of EIS data of the SAD at v = 3 m/s.
Fig. 10.  SEM surface morphologies of the SAD after corrosion at v = 3 m/s.
Time(h) Rs
(Ω cm2)
-1 cm-2 s-n)
ndl Rct
(Ω cm2)
(H cm-2)
(Ω cm2)
Ave err
1 11.53 9.7E-4 1 14.87 19.63 34.87 5.26
5 11.36 2.1E-3 1 18.97 496.6 91.76 6.31
9 11.58 2.4E-3 1 21.39 1655 168.3 4.44
Table 4  Equivalent circuit fitting of EIS data of SAD at v = 5 m/s from 1-9 h of corrosion.
(Ω cm2)
-1 cm-2 s-n)
ndl Rct
(Ω cm2)
-1 cm-2 s-n)
ndf Rdf
(Ω cm2)
Ave err (%)
10 11.24 2.1E-3 1 15.81 9.4E-3 0.2711 24.23 8.74
13 11.31 2.0E-3 1 19.24 8.2E-3 0.4292 26.22 10.53
16 11.27 1.9E-3 1 21.74 9.9E-3 0.4664 25.45 7.32
Table 5  Equivalent circuit fitting of EIS data of SAD at v = 5 m/s from 10-16 h of corrosion.
Fig. 11.  SEM surface morphologies of the SAD after corrosion at v = 5 m/s.
(Ω cm2)
-1 cm-2 s-n)
ndl Rct
(Ω cm2)
(H cm-2)
(Ω cm2)
Ave err (%)
1 11.80 3.1E-3 1 15.12 49.85 64.03 8.53
4 11.73 2.9E-3 1 16.02 80.79 76.3 5.24
7 11.74 2.6E-3 1 17.38 108.6 101.73 4.69
10 11.51 2.5E-3 1 18.72 129.5 107.3 6.41
13 11.04 2.2E-3 1 19.33 167.8 133 7.04
16 11.81 2.0E-3 1 20.68 215.4 151.6 5.92
Table 6  Equivalent circuit fitting of EIS data of the SAD at v = 7 m/s.
Fig. 12.  SEM surface morphologies of the SAD after corrosion at v = 7 m/s.
Fig. 13.  Absolute pressure (Pa) of defect local magnification under different flow velocities with flow direction from left to right.
Fig. 14.  SEM of the SAD removed corrosion scale.
Fig. 15.  3D surface morphology and profile of area (c) of the SAD removed corrosion scale.
Fig. 16.  Localized corrosion rate and the depth of localized corrosion pits at downstream of defect (the error bar represents the standard deviation of five deepest localized corrosion pits).
[1] S. Nesic, W. Sun, 2.25-corrosion in acid gas solutions, Shreirs Corr. (2010) 1270-1298.
[2] V.V. Zav’Yalov, Corrosion of Oil-Field Pipelines, Prot. Met. 39 (2003) 274-277.
[3] S. Nešić, Key issues related to modelling of internal corrosion of oil and gas pipelines - a review, Corros. Sci. 49 (2007) 4308-4338.
doi: 10.1016/j.corsci.2007.06.006
[4] D.G. Li, Y.R. Feng, Z.Q. Bai, M.S. Zheng, Characteristics of CO 2 corrosion scale formed on N80 steel in stratum water with saturated CO 2, Appl. Surf. Sci. 253 (2007) 8371-8376.
doi: 10.1016/j.apsusc.2007.04.011
[5] Z.Y. Hu, D.L. Duan, S.H. Hou, X.J. Ding, S. Li, Preliminary study on corrosion behaviour of carbon steel in oil-water two-phase fluids, J. Mater. Sci. Technol. 31 (2015) 1274-1281.
[6] H. Guo, G.F. Li, X. Cai, J.J. Zhou, W. Yang, SCC behaviour of X-70 pipe line steelin near-neutral pH solutions, J. Mater. Sci. Technol. 21 (2005) 33-38.
[7] G.A. Zhang, Y.F. Cheng, Corrosion of X65 steel in CO2-saturated oil fieldformation water in the absence and presence omf acetic acid, Corros. Sci. 51 (2009) 1589-1595.
[8] S.S.R. De, The influence of inhibitors molecular structure and steel microstructure on corrosion layers in CO2 corrosion: An XPS and SEM characterization, Appl. Surf. Sci. 236 (2004) 77-97.
[9] G.A. Zhang, Y.F. Cheng, On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production, Corros. Sci. 51 (2009) 87-94.
doi: 10.1016/j.corsci.2008.10.013
[10] A. Dugstad, Mechanism of Protective Film Formation During CO2 Corrosion of Carbon Steel, NACE International, 1998.
[11] N. Sridhar, D.S. Dunn, A.M. Anderko, M.M. Lencka, U. Schutt, Effects of water and gas compositions on the internal corrosion of gas pipelines - modeling and experimental studies, Corrosion 57 (2001) 221-235.
[12] J.L. Mora-Mendoza, S. Turgoose, FeC influence on the corrosion rate of mild steel in aqueous CO systems under turbulent flow conditions, Corros. Sci. 44 (2002) 0-1246.
[13] N. Ochoa, C. Vega, N. Pébère, J. Lacaze, J.L. Brito, CO 2 corrosion resistance of carbon steel in relation with microstructure changes, Mater. Chem. Phys. 156 (2015) 198-205.
[14] L. Zeng, G.A. Zhang, X.P. Guo, C.W. Chai, Inhibition effect of thioureidoimidazoline inhibitor for the flow accelerated corrosion of an elbow, Corros. Sci. 90 (2015) 202-215.
[15] G.A. Zhang, L. Zeng, H.L. Huang, X.P. Guo, A study of flow accelerated corrosion at elbow of carbon steel pipeline by array electrode and computational fluid dynamics simulation, Corros. Sci. 77 (2013) 334-341.
[16] L. Zeng, G.A. Zhang, X.P. Guo, Erosion-corrosion at different locations of X65 carbon steel elbow, Corros. Sci. 85 (2014) 318-330.
doi: 10.1016/j.corsci.2014.04.045
[17] E. Barmatov, T. Hughes, M. Nagl, Efficiency of film-forming corrosion inhibitors in strong hydrochloric acid under laminar and turbulent flow conditions, Corros. Sci. 92 (2015) 85-94.
[18] X. Tang, L.Y. Xu, Y.F. Cheng Electrochemical corrosion behavior of X-65 steel in the simulated oil-sand slurry. II: Synergism of erosion and corrosion, Corros. Sci. 50 (2008) 1469-1474.
[19] S. Nesic, Effects of multiphase flow on internal CO2 corrosion of mild steel pipelines, Energy Fuels 26 (2012) 4098-4111.
[20] H.J. Kim, K.H. Kim, Intuitional experiment and numerical analysis of flow characteristics affected by flow accelerated corrosion in elbow pipe system, Nucl. Eng. Des. 301 (2016) 183-188.
[21] T.J. Harvey, J.A. Wharton, R.J.K. Wood, Development of synergy model for erosionâ corrosion of carbon steel in a slurry pot, Tribology - Materials, Surf. Interfaces 1 (2007) 33-47.
[22] X. Jiang, Y.G. Zheng, W. Ke, Effect of flow velocity and entrained sand on inhibition performances of two inhibitors for CO corrosion of N80 steel in 3% NaCl solution, Corros. Sci. 47 (2005) 2636-2658.
doi: 10.1016/j.corsci.2004.11.012
[23] L.R.M. Ferreira, H.A. Ponte, L.S. Sanches, A. Abrantes, CO2 Corrosion in the Region Between the Static and Turbulent Flow Regimes, Mater. Res. Ibero Am. J. Mater. 18 (2015) 245-249, s.
[24] G.D. Eyu, G. Will, W. Dekkers, J. MacLeod, Effect of hydrodynamics and surface roughness on the electrochemical behaviour of carbon steel in CSG produced water, Appl. Surf. Sci. 357 (2015) 506-515.
[25] O.O. Ige, L.E. Umoru, Effects of shear stress on the erosion-corrosionbehaviour of X-65 carbon steel: A combined mass-loss and profilometry study, Tribol. Int. 94 (2016) 155-164.
doi: 10.1016/j.triboint.2015.07.040
[26] G.A. Zhang, Y.F. Cheng, Electrochemical characterization and computational fluid dynamics simulation of flow-accelerated corrosion of X65 steel in a CO-saturated oilfield formation water, Corros. Sci. 52 (2010) 2716-2724.
[27] L. Zeng, S. Shuang, X.P. Guo, G.A. Zhang, Erosion-corrosion of stainless steel at different locations of a 90◦elbow, Corros. Sci. 111 (2016), S0010938X16302074.
[28] F. Farelas, M. Galicia, B. Brown, S. Nesic, H. Castaneda, Evolution of dissolution processes at the interface of carbon steel corroding in a CO environment studied by EIS, Corros. Sci. 52 (2010) 0-517.
[29] D. Zheng, D. Che, Y. Liu, Experimental investigation on gas-liquid two-phase slug flow enhanced carbon dioxide corrosion in vertical upward pipeline, Corros. Sci. 50 (2008) 0-3020.
[30] J.J. Park, E.K. Park, G.J. Lee, C.K. Rhee, M.K. Lee, Effect of a nano-sized TiC particle addition on the flow-assisted corrosion resistance of SA 106B carbon steel, Appl. Surf. Sci. 415 (2017) 143-148.
[31] L. Wei, B.F.M. Pots, B. Brown, K.E. Kee, S. Nesic, A direct measurement of wall shear stress in multiphase flow—Is it an important parameter in CO 2 corrosion of carbon steel pipelines? Corros. Sci. 110 (2016) 35-45.
doi: 10.1016/j.corsci.2016.04.008
[32] S. Zhang, L. Hou, H. Wei, Y. Wei, B. Liu, Mater. Corros. 69 (2017).
[33] F.F. Eliyan, A. Alfantazi, Mechanisms of corrosion and electrochemical significance of metallurgy and environment with corrosion of iron and steel in bicarbonate and carbonate solutions-a review, Corrosion 70 (2014) 880-898.
[34] H.M. Ezuber, A.A. Shater, Influence of environmental parameters on the corrosion behavior of 90/10 cupronickel tubes in 3.5% NaCl, Desalin. Water Treat. 57 (2015) 1-10.
[35] R.B. Burstein, T. G, Reactions of pipeline steels in carbon dioxide solutions, Corros. Sci. 41 (1999) 117-139.
doi: 10.1016/S0010-938X(98)00104-8
[36] T. Berntsen, M. Seiersten, T. Hemmingsen, Effect of FeCO3 Supersaturation And Carbide Exposure On the CO2 Corrosion Rate of Carbon Steel, 2011.
[37] Cd. Waard, Prediction of CO2 corrosion of carbon steel, Corr. NACE Int. (1993) 69.
[38] D.A. López, W.H. Schreiner, S.R.D. Sánchez, S.N. Simison, The influence of carbon steel microstructure on corrosion layers: An XPS and SEM characterization, Appl. Surf. Sci. 207 (2003) 69-85.
doi: 10.1016/S0169-4332(02)01218-7
[39] Pratik Murkute, J. Mater. Proc. Tech. 273(2019).
[40] J.L. Li, H.X. Ma, S.D. Zhu, C.T. Qu, Z.F. Yin, J.L. Li, H.X. Ma, Z.F. Yin, Erosion resistance of CO 2 corrosion scales formed on API P110 carbon steel, Corros. Sci. 86 (2014) 101-107.
[41] K. Gao, F. Yu, X. Pang, G. Zhang, L. Qiao, W. Chu, M. Lu, Mechanical properties of CO corrosion product scales and their relationship to corrosion rates, Corros. Sci. 50 (2008) 2796-2803.
[42] B.B.Y. Yang, S. Nesic, M. Elena Gennaro, B. Molinas, Mechanical Strength and Removal of a Protective Iron Carbonate Layer Formed on Mild Steel in CO2 Corrosion, Corrosion, NACE International, 2010, pp. 10383.
[43] J.F. S, J.K. Heuer, Microstructure analysis of coupons ex-posed to carbon dioxide corrosion in multiphase flow, Corrosion(1998) 566-575.
[44] W. Li, B. Brown, D. Young, S. Nesic, Investigation of Pseudo-Passivation of Mild Steel in CO2 Corrosion, orrosion 70(2014).
[45] Y. Xiong, B. Brown, B. Kinsella, S. Nesic, A. Pailleret, Atomic force microscopy study of the adsorption of surfactant corrosion inhibitor films, corrosion 70(2014).
[46] G. S, R.H. Hausler, Hydrodynamic and flow effects on corrosion inhibition, Corrosion (2004).
[47] W. Sun, S. Nesic, Corrosion in Acid Gas Solution, Shreir’s Corr. 2 (2010) 1270-1298.
[48] Z. Ma, Y. Yang, B. B, S. Nesic, M. Singer, NACE International, 2018, pp. 11192.
[49] G. Chen, Nanoscale Energy Transport and Conversion: a Parallel Treatment of Electrons, Molecules, Phonons, and Photons, Oxford University Press, Inc, New York NY, 2005.
[50] L. Wei, B.F.M. Pots, X. Zhong, S. Nesic, Inhibition of CO 2 Corrosion of Mild Steel - Study of Mechanical Effects of Highly Turbulent Disturbed Flow, Corros. Sci. 126 (2017) 208-226.
doi: 10.1016/j.corsci.2017.07.003
[51] M. Khalesi, S. Deckers, D. Riveros-Galan, K. Gebruers, G. Derdelinckx, Upgraded Model of Primary Gushing: From Nanobubble Formation until Liquid Expulsion, J. Am. Soc. Brew. Chem. 73 (2015) 343-346.
[52] H.Y. Lin, B.A. Bianccucci, S. Deutsch, A.A. Fontaine, J.M. Tarbell, Observation and quantification of gas bubble formation on a mechanical heart valve, J. Biomech. Eng. 122 (2000) 304.
doi: 10.1115/1.1287171 pmid: 11036552
[53] A. Vogel, W. Lauterborn, R. Timm, Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary, J. Fluid Mech. 206 (2006) 299-338.
[54] L. Wei, X. Pang, K. Gao, Effect of small amount of H2S on the corrosion behavior of carbon steel in the dynamic supercritical CO2 environments, Corrosion. Sci. 103 (2016) 132-144.
[1] Chen Xiaoguang, Xie Ruishan, Lai Zhiwei, Liu Lei, Yan Jiuchun, Zou Guisheng. Interfacial Structure and Formation Mechanism of Ultrasonic-assisted Brazed Joint of SiC Ceramics with Al-12Si Filler Metals in Air[J]. 材料科学与技术, 2017, 33(5): 492-498.
[2] Wu H.N.,Xu D.S.,Wang H.,Yang R.. Molecular Dynamics Simulation of Tensile Deformation and Fracture of γ-TiAl with and without Surface Defects[J]. 材料科学与技术, 2016, 32(10): 1033-1042.
[3] Y.Z. Jia, J.Q. Wang, E.H. Han, W. Ke. Stress Corrosion Cracking of X80 Pipeline Steel in Near-Neutral pH Environment under Constant Load Tests with and without Preload[J]. J. Mater. Sci. Technol., 2011, 27(11): 1039-1046.
[4] Wei Deng, Xiuhua Gao, Dewen Zhao, Linxiu Du, Di Wu, Guodong Wang. Effect of Ti-enriched Carbonitride on Microstructure and Mechanical Properties of X80 Pipeline Steel[J]. J. Mater. Sci. Technol., 2010, 26(9): 803-809.
[5] Hong Yu,Yugui Zheng,Zhiming Yao. Cavitation Erosion Corrosion Behaviour of Manganese-nickel-aluminum Bronze in Comparison with Manganese-brass[J]. J. Mater. Sci. Technol., 2009, 25(06): 758-766.
[6] Y.Tsunekawa, S.Tamura, M.Okumiya, N.Ishihara. Hot-Dip Coating of Lead-free Aluminum on Steel Substrates with Ultrasonic Vibration[J]. J. Mater. Sci. Technol., 2008, 24(01): 41-44.
[7] Xiaoya, Yonggui YAN, Zhenming XU, Jianguo LI. Cavitation Erosion Behavior of as-Welded Cu12Mn8Al3Fe2Ni Alloy[J]. J. Mater. Sci. Technol., 2004, 20(03): 304-306.
[8] Xiaohuai XUE, Luhai WU, Bainian QIAN, Jingli LI, Songnian LOU. Effects of Carbon on the CG HAZ Toughness and Transformation of X80 Pipeline Steel[J]. J. Mater. Sci. Technol., 2003, 19(06): 580-582.
[9] Suzhen LUO, Yugui ZHENG, Wei LIU, Heming JING, Zhiming YAO, Wei KE. Cavitation Erosion Behavior of CrMnN Duplex Stainless Steel in Distilled Water and 3% NaCl Solution[J]. J. Mater. Sci. Technol., 2003, 19(04): 346-350.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.