Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 49 Issue (0): 166-178    DOI: 10.1016/j.jmst.2020.01.016
Research Article Current Issue | Archive | Adv Search |
Near-neutral pH corrosion of mill-scaled X-65 pipeline steel with paint primer
Shidong Wang, Lyndon Lambornb, Karina Chevilc, Erwin Gamboac, Weixing Chena,*()
a Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 2G6, Canada
b Enbridge Pipelines Inc., Edmonton, T5J 3N7, Canada
c TC Energy Corporation, Calgary, T2P 5H1, Canada
Download:  HTML  PDF(6719KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behaviour of mill-scaled X65 pipeline steel with and without a primer layer was studied in a simulated near-neutral pH soil solution. Results revealed a three-stage corrosion process of the mill-scaled pipeline steel surface. The first stage included an initial preferential dissolution of goethite (α-FeOOH) and lepidocrocite (γ-FeOOH) in mill scale. The second stage was marked by enhanced localized corrosion and pit-formation because of either galvanic corrosion or acidic dissolution in areas enclosed by mill scale. The final stage was general corrosion after the mill scale flaked off the steel surface. When the primer layer was applied, localized corrosion was significantly enhanced on the steel surface and persisted for an extended period as compared to the mill-scaled condition. The precipitation of siderite (FeCO3) was observed at flawed locations of mill scale, although the bulk chemistry is not favorable for its formation on the steel surface free of mill scale. The local precipitation of siderite formed a capped mill scale enclosure where localized corrosion can be further enhanced.

Key words:  Pipeline steel      Primer paint      Mill scale      Localized corrosion      Siderite precipitation     
Received:  09 June 2019     
Corresponding Authors:  Weixing Chen     E-mail:  weixing@ualberta.ca

Cite this article: 

Shidong Wang, Lyndon Lamborn, Karina Chevil, Erwin Gamboa, Weixing Chen. Near-neutral pH corrosion of mill-scaled X-65 pipeline steel with paint primer. J. Mater. Sci. Technol., 2020, 49(0): 166-178.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2020.01.016     OR     https://www.jmst.org/EN/Y2020/V49/I0/166

Ingredient Concentration CAS number
Acetone 24.23 67-64-1
Propane 13.86 74-98-6
N-butane 8.14 106-97-8
VM&P Naphtha 5.58 64742-89-8
TiO2 5.13 13463-67-7
Toluene 5.07 108-88-3
Talc (Mg3Si4O10(OH)2) 4.49 14807-96-6
Xylene (mix) 4.08 1330-20-7
Ethyl alcohol 3.98 64-17-5
N-butyl acetate 2.78 123-86-4
Mineral spirits 2.55 64742-47-8
Isobutyl acetate 1.62 110-19-0
Isopropyl alcohol 1.02 67-63-0
Other additives 17.47 N/A
Table 1  Chemical composition of the primer paint used in the current investigation (wt%).
KCl NaHCO3 CaCl2·2H2O MgSO4·7H2O CaCO3
0.0035 0.0195 0.0255 0.0274 0.0606
Table 2  Chemical composition of the C2 solution used in the current investigation (g/l).
Fig. 1.  Schematic illustration of the samples used in the current investigation for (a) mill-scaled and (b) primer pre-coated samples.
Fig. 2.  Microstructural characterization of samples before test: (a, b) secondary electron imaging of the surfaces of mill-scaled and primer pre-coated samples, respectively; (c, d) backscattered electron imaging of the cross-sectional surfaces of mill-scaled and primer pre-coated samples, respectively; (e) Raman spectra of the outer and inner layers of mill scale.
Fig. 3.  Mass loss of the mill-scaled and primer pre-coated samples immersed in C2 solution for up to 90 d. Standard deviation of the measured data was provided. The symbols and lines denote the experimental and fitted data, respectively.
Fig. 4.  pH variation of the testing solution for up to 90 d.
Fig. 5.  XRD patterns of samples after exposure to C2 solution for up to 90 d: (a) mill-scaled, (b) primer pre-coated and (c) polished samples. JCPDS standard cards are provided, and the strongest lines are marked correspondingly (Fe, No. 65-4899; γ-FeOOH, No. 74-1877; α-FeOOH, No. 08-0097; Fe3O4, No. 79-0419; FeCO3, No. 29-0696; TiO2, No. 87-0710; Mg3Si4O10(OH)2, No. 83-1768).
Fig. 6.  Backscattered electron imaging to surfaces of mill-scaled samples exposed to C2 solution for (a) 0 d, (b) 5 d, (c) 30 d and (d) 90 d; (e) secondary electron observation of the image (d); (f) high-magnification imaging of the marked area “f” in image (e). The inset in image (f) is a Raman spectrum from the corresponding marked area in image (f).
Fig. 7.  EDS analysis results obtained within the marked areas in Fig. 6. Images (a), (b), (c) and (d) are EDS results of the corresponding marked areas “a”, “b”, “c” and “d” in Fig. 6 (a, b), respectively. Note that C element was removed from EDS results, as it might come from the contamination.
Fig. 8.  Backscattered electron imaging to surfaces of primer pre-coated samples exposed to C2 solution for (a) 0 d, (b) 5 d, (c) 30 d and (d) 90 d; (e) secondary electron observation of the image (d); (f) high-magnification imaging of marked area “f” in image (e). The inset in image (f) is the backscattered electron observation of the marked area “g” in image (f).
Fig. 9.  Representative backscattered electron images of cross-sectional surfaces of samples after exposure to C2 solution for various time: (a, c) mill-scaled and primer pre-coated samples after 30 d of immersion, respectively; (b, d) mill-scaled and primer pre-coated samples after 90 d of immersion, respectively.
Fig. 10.  Pit-depth distribution measured on 1 cm long cross-section of each sample after corrosion exposure for 90 d. Error bars show the standard deviation of the measured data.
Fig. 11.  Open circuit potential (OCP) variation of samples in C2 solution for up to 90 d.
Fig. 12.  Electrochemical impedance spectra of mill-scaled samples with different immersion time: (a) Nyquist plots, (b) enlarged graph of (a), (c) Bode plots of log |Z| vs. log f and (d) Bode plots of phase angle (θ) vs. log f. The symbols and lines in images (a-d) denote the experimental and fitted data, respectively.
Fig. 13.  Electrochemical impedance spectra of primer pre-coated samples with different immersion time: (a) Nyquist plots, (b) enlarged graph of (a), (c) Bode plots of log |Z| vs. log f and (d) Bode plots of phase angle (θ) vs. log f. The symbols and lines in images (a-d) denote the experimental and fitted data, respectively.
Fig. 14.  Equivalent circuit models used for fitting the impedance spectra of samples: (a) mill-scaled samples and (b) primer pre-coated samples. (Rs: solution resistance; CPEo: CPE of the reduction process of oxides; Ro: resistance of the reduction process of oxides; CPEi: CPE of the dissolution of iron; Ri: resistance of the dissolution of iron; CPEc: CPE of the primer layer; Rc: resistance of the primer layer).
Time Rs
(Ω cm2)
Qo
(μΩ-1 cm-2 sn)
no Ro
(Ω cm2)
Qi
(μΩ-1 cm-2 sn)
ni Ri
(Ω cm2)
χ2×104
5 d 582 412 0.76 223 658 0.76 4535 1.01
30 d 561 484 0.79 690 173 0.80 3078 0.54
60 d 539 624 0.80 449 293 0.79 2278 0.43
90 d 529 671 0.82 407 373 0.80 2268 0.39
Table 3  Fitting results of the EIS for mill-scaled samples with various immersion time.
Time Rs
(Ω cm2)
Qc
(μΩ-1 cm-2 sn)
nc Rc
(Ω cm2)
Qo
(μΩ-1 cm-2 sn)
no Ro
(Ω cm2)
Qi
(μΩ-1 cm-2 sn)
ni Ri
(Ω cm2)
χ2×104
5 d 588 0.5 0.67 923 170 0.59 1392 426 0.65 7875 1.49
30 d 569 0.8 0.65 911 183 0.63 1131 354 0.77 8833 1.43
60 d 541 1.2 0.61 631 189 0.77 808 357 0.81 6740 1.71
90 d 512 1.4 0.60 555 191 0.77 405 380 0.82 5910 1.70
Table 4  Fitting results of the EIS for primer pre-coated samples with various immersion time.
Species ΔG0
(kJ mol-1)
Ref. Species ΔG0
(kJ mol-1)
Ref.
H2 0 [52] CO32- -527.9 [52]
H+ 0 [52] Fe2+ -78.9 [48]
Fe 0 [52] H2CO3 -623.2 [52]
FeCO3 -666.67 [48] HCO3- -586.85 [52]
Fe3O4 -1015.4 [48] H2O -237.141 [49]
α-FeOOH -485.3 [50] Fe2(OH)2CO3 -1169.3 [48]
γ-FeOOH -480.1 [51] Fe6(OH)12CO3 -3650 [48]
Table 5  Thermodynamic data of used species in E-pH calculations at 298.15 K.
Fig. 15.  E-pH diagrams for the Fe-H2O-CO2 system at 25 °C, pressure =1 bar: (a) [Fe2+] = 10-6, 10-5, 10-4 and 10-3 mol/l and the concentrations of the anions are assumed to be 10-2 mol/l, (b) [Fe2+] = 10-6 mol/l, [anions] = 10-3, 10-2 and 10-1 mol/l. The superposed red and blue triangles respectively represent OCP values of mill-scaled and primer pre-coated samples at various immersion time.
No. Electrode reaction Equilibrium potential equation E (V/SCE)
(8) Fe→Fe2++2e- EFe2+/Fe=-0.6527+0.0296log[Fe2+] -0.830
(9) γFeOOH+3H++e-→Fe2++2H2O EγFeOOH/ Fe2+=0.5136-0.0592log[Fe2+]-0.178pH -0.251
(10) αFeOOH+3H++e-→Fe2++2H2O EαFeOOH/ Fe2+=0.4597-0.0592log[Fe2+]-0.178pH -0.305
(11) Fe3O4+8H++2e-→3Fe2++4H2O EFe3O4/Fe2+=0.6364-0.0888log[Fe2+]-0.237pH -0.322
(12) 2H++2e-→H2 EH+/H2=-0.2438-0.0592pH -0.616
Table 6  Possible electrode reactions and corresponding expressions for their equilibrium potential used in the currently investigation (pH = 6.29, [Fe2+] = 10-6 mol/l).
Fig. 16.  Schematic illustration for the corrosion process on cross-sections of (a, c, e, g) mill-scaled and (b, d, f, h) primer pre-coated samples in C2 solution.
[1] W. Chen, Corrosion 72 (2016) 962-977.
doi: 10.5006/1967
[2] H.L.H. Cuong, T.V. Dieu, N.D. Thanh, D.T.Y. Oanh, Vietnam J. Chem. 54 (2016) 419-423.
[3] V. Valencia-Goujon, T. Hawkins, E. Maya-Visuet, H. Castaneda, Corrosion 2015, NACE International, Dallas, Texas, 2015, March 15-19.
[4] I. Thompson, J.R. Saithala, Corros. Eng. Sci. Technol. 51 (2016) 118-135.
[5] D.A. Bayliss, D.H. Deacon, Steelwork Corrosion Control, Spon Press, London, 2014.
[6] S. Ebnesajjad, A.H. Landrock, New York, 2014.
pmid: 11662225
[7] Z. Shirband, University of Alberta, 2016.
[8] Z. Qin, B. Demko, J. Noël, D. Shoesmith, F. King, R. Worthingham, K. Keith, Corrosion 60 (2004) 906-914.
[9] P. Ghods, O.B. Isgor G.A. McRae, J. Li, G.P. Gu, Corros. Sci. 53 (2011) 946-954.
[10] Y.F. Cheng, New Jersey, 2013.
[11] B. Fang, E. Han, J. Wang, W. Ke, Corrosion 63 (2007) 419-432.
[12] Y.Z. Jia, J.Q. Wang, E.H. Han, W. Ke, J. Mater. Sci. Technol. 27 (2011) 1039-1046.
[13] M.C. Bagatini, V. Zymla, E. Osório A.C.F. Vilela, ISIJ Int. 51 (2011) 1072-1079.
[14] G. Zhang, Y. Cheng, Electrochim. Acta 56 (2011) 1676-1685.
[15] H. Liu, Y.F. Cheng, Electrochim. Acta 266 (2018) 312-325.
[16] L. Shi, X. Yang, Y. Song, D. Liu, K. Dong, D. Shan, E.H. Han, J. Mater. Sci. Technol. 35 (2019) 1886-1893.
doi: 10.1016/j.jmst.2019.04.022
[17] X. Zhang, K. Xiao, C. Dong, J. Wu, X. Li, Y. Huang, Eng. Fail. Anal. 18 (2011) 1981-1989.
doi: 10.1016/j.engfailanal.2011.03.007
[18] X. Nie, X. Li, C. Du, Y. Huang, H. Du, J. Raman Spectrosc. 40 (2009) 76-79.
doi: 10.1002/jrs.2082
[19] B.W.A. Sherar, P.G. Keech, D.W. Shoesmith, Corros. Sci. 53 (2011) 3643-3650.
doi: 10.1016/j.corsci.2011.07.008
[20] J. Xu, Y. Bai, T. Wu, M. Yan, C. Yu, C. Sun, Eng. Fail. Anal. 100 (2019) 192-205.
doi: 10.1016/j.engfailanal.2019.02.059
[21] T. Wu, M. Yan, L. Yu, H. Zhao, C. Sun, F. Yin, W. Ke, Corros. Sci. 157 (2019) 518-530.
[22] L. Yu, M. Yan, B. Wang, Y. Shu, J. Xu, C. Sun, J. Chem. Soc. 38 (2018) 10-17.
[23] K. Yin, H. Liu, Y.F. Cheng, Corros. Sci. 145 (2018) 271-282.
[24] T. Wu, C. Sun, J. Xu, M. Yan, F. Yin, W. Ke, Corros. Eng. Sci. Technol. 53 (2018) 265-275.
[25] M. Yan, J. Xu, L. Yu, T. Wu, C. Sun, W. Ke, Corros. Sci. 110 (2016) 23-34.
[26] K. Yin, Y. Yang Y. Frank Cheng, Constr. Build. Mater. 192 (2018) 20-27.
[27] U. Eduok, E. Ohaeri, J. Szpunar, Mater. Sci. Eng. C 105 (2019), 110095.
[28] R. Jia, T. Unsal, D. Xu, Y. Lekbach, T. Gu, Int. Biodeter. Biodegr. 137 (2019) 42-58.
[29] E. Ohaeri, U. Eduok, J. Szpunar, Int. J. Hydrogen Energy 43 (2018) 14584-14617.
[30] Q. Hu, S. Lu, J. Liu, F. Huang, Anti-Corros. Methods Mater. 66 (2019) 651-660.
[31] K. Yin, University of Calgary, 2018.
[32] L. Xu, X. Su, Y. Cheng, Corros. Sci. 66 (2013) 263-268.
[33] R.M. Souto, Y. González-Garc$\acute{i}$a, S. González, G.T. Burstein, Corros. Sci. 46 (2004) 2621-2628.
[34] K. Chevil, W. Chen, G. Van Boven, R. Kania, J. Been, 10th International Pipeline Conference, American Society of Mechanical Engineers Digital Collection, Calgary, Alberta, 2014, September 29-October 3.
[35] A. Eslami, R. Kania, B. Worthingham, G.V. Boven, R. Eadie, W. Chen, Corros. Sci. 53 (2011) 2318-2327.
[36] D. de la Fuente, J. Alcántara, B. Chico, I. Díaz, J.A. Jiménez, M. Morcillo, Corros. Sci. 110 (2016) 253-264.
[37] D. Neff, S. Reguer, L. Bellot-Gurlet, P. Dillmann, R. Bertholon, J. Raman Spectrosc. 35 (2004) 739-745.
doi: 10.1002/(ISSN)1097-4555
[38] M. Legodi D. De Waal, Dye. Pigment. 74 (2007) 161-168.
doi: 10.1016/j.dyepig.2006.01.038
[39] J. Dong, E. Han, W. Ke, Sci. Technol. Adv. Mater. 8 (2007) 559-565.
[40] L. Hao, S. Zhang, J. Dong, W. Ke, Corros. Sci. 59 (2012) 270-276.
doi: 10.1016/j.corsci.2012.03.010
[41] C. Qiao, L. Shen, L. Hao, X. Mu, J. Dong, W. Ke, J. Liu, B. Liu, J. Mater. Sci. Technol. 35 (2019) 2345-2356.
doi: 10.1016/j.jmst.2019.05.039
[42] L. Hao, S. Zhang, J. Dong, W. Ke, Corros. Sci. 53 (2011) 4187-4192.
[43] C. Lee, M. Odziemkowski, D. Shoesmith, J. Electrochem. Soc. 153 (2006) B33-B41.
[44] F. King, Virginia, 2010.
[45] M. Nobial, O. Devos, O.R. Mattos, B. Tribollet, J. Electroanal. Chem. 600 (2007) 87-94.
[46] A. Lasia, Electrochemical Impedance Spectroscopy and its Applications, in: Modern Aspects of Electrochemistry, Springer, Boston, Massachusetts, 2002, pp. 143-248.
[47] A. Roine, Finland, 2002.
[48] J. Dong, T. Nishimura, T. Kodama, Mater. Res. Soc. Symp. Proc. 713 (2002) 105-112.
[49] J. Malcolm, W. Chase, NIST-JANAF Thermochemical Tables, in: Part I, Al-Co, 4th ed., Gaithersburg, Maryland, Monograph, 1998.
[50] B. Beverskog, I. Puigdomenech, Corros. Sci. 38 (1996) 2121-2135.
[51] J. Majzlan, K.-D. Grevel, A Navrotsky, Am. Mineral. 88 (2003) 855-859.
[52] D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Churney, R.L. Nuttall, J. Phys. Chem. Ref. Data 18 (1989) 1807-1812.
[53] M. Nordsveen, S. Neˇsic, R. Nyborg, A. Stangeland, Corrosion 59 (2003) 443-456.
[54] R. Barker, D. Burkle, T. Charpentier, H. Thompson, A. Neville, Corros. Sci. 142 (2018) 312-341.
[55] R.A. De Motte, R. Barker, D. Burkle, S.M. Vargas, A. Neville, Mater. Chem. Phys. 216 (2018) 102-111.
[56] W. Sun, K. Chokshi, S. Nesic, Corrosion 2005, NACE International, Houston, Texas, 2005,April 3-7.
[57] F. Farelas, B. Brown, S. Nesic, Corrosion 2013, NACE International, Orlando, Florida, 2013, March 17-21.
[58] Y. Cheng, Electrochim. Acta 52 (2007) 2661-2667.
[59] M. Li, Y. Cheng, Electrochim. Acta 52 (2007) 8111-8117.
[60] C. Dong, A. Fu, X. Li, Y. Cheng, Electrochim. Acta 54 (2008) 628-633.
[61] V.S. Bagotsky, New Jersey, 2005.
[62] H. Antony, L. Legrand, L. Maréchal, S. Perrin, P. Dillmann, A. Chaussé, Electrochim. Acta 51 (2005) 745-753.
[63] Y.H. Huang, T.C. Zhang, Water Res. 40 (2006) 3075-3082.
pmid: 16901528
[64] R. Avci, B. Davis, M. Wolfenden, I. Beech, K. Lucas, D. Paul, Corros. Sci. 76 (2013) 267-274.
[65] H. Liu, X. Zhong, H. Liu Y. Frank Cheng, Electrochem. Commun. 90 (2018) 1-5.
[66] Z. Liu, X. Gao, L. Du, J. Li, P. Li, C. Yu, R.D.K. Misra, Y. Wang, Electrochim. Acta 232 (2017) 528-541.
[67] B. Zhang, X.L. Ma, J. Mater. Sci. Technol. 35 (2019) 1455-1465.
[68] F. Xue, X. Wei, J. Dong, C. Wang, W. Ke, J. Mater. Sci. Technol. 35 (2019) 596-603.
[69] G.S. Parkinson, Surf. Sci. Rep. 71 (2016) 272-365.
[70] F. King, Overview of a Carbon Steel Container Corrosion Model for a Deep Geological Repository in Sedimentary Rock, in: Nuclear Waste Management Organization Report, Nuclear Waste Management Organization, Toronto, Ontario, 2007.
[1] Mariana X. Milagre, Uyime Donatus, Naga V. Mogili, Rejane Maria P. Silva, Bárbara Victória G. de Viveiros, Victor F. Pereira, Renato A. Antunes, Caruline S.C. Machado, João Victor S. Araujo, Isolda Costa. Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding[J]. 材料科学与技术, 2020, 45(0): 162-175.
[2] Enze Zhou, Jianjun Wang, Masoumeh Moradi, Huabing Li, Dake Xu, Yuntian Lou, Jinheng Luo, Lifeng Li, Yulei Wang, Zhenguo Yang, Fuhui Wang, Jessica A. Smith. Methanogenic archaea and sulfate reducing bacteria induce severe corrosion of steel pipelines after hydrostatic testing[J]. 材料科学与技术, 2020, 48(0): 72-83.
[3] Zhuowei Tan, Liuyang Yang, Dalei Zhang, Zhenbo Wang, Frank Cheng, Mingyang Zhang, Youhai Jin. Development mechanism of internal local corrosion of X80 pipeline steel[J]. 材料科学与技术, 2020, 49(0): 186-201.
[4] Fang Xue, Xin Wei, Junhua Dong, Changgang Wang, Wei Ke. Effect of chloride ion on corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution with different dissolved oxygen concentrations[J]. 材料科学与技术, 2019, 35(4): 596-603.
[5] Xianbo Shi, Wei Yan, Dake Xu, Maocheng Yan, Chunguang Yang, Yiyin Shan, Ke Yang. Microbial corrosion resistance of a novel Cu-bearing pipeline steel[J]. 材料科学与技术, 2018, 34(12): 2480-2491.
[6] S.G. Wang, M. Sun, Y.H. Xu, K. Long, Z.D. Zhang. Enhanced localized and uniform corrosion resistances of bulk nanocrystalline 304 stainless steel in high-concentration hydrochloric acid solutions at room temperature[J]. 材料科学与技术, 2018, 34(12): 2498-2506.
[7] Li Jing, Gao Xiuhua, Du Linxiu, Liu Zhenguang. Relationship between microstructure and hydrogen induced cracking behavior in a low alloy pipeline steel[J]. 材料科学与技术, 2017, 33(12): 1504-1512.
[8] Meng Liu,Jianqiu Wang,Wei Ke, En-Hou Han. Corrosion Behavior of X52 Anti-H2S Pipeline Steel Exposed to High H2S Concentration Solutions at 90 °C[J]. J. Mater. Sci. Technol., 2014, 30(5): 504-510.
[9] Y.Z. Jia, J.Q. Wang, E.H. Han, W. Ke. Stress Corrosion Cracking of X80 Pipeline Steel in Near-Neutral pH Environment under Constant Load Tests with and without Preload[J]. J. Mater. Sci. Technol., 2011, 27(11): 1039-1046.
[10] Wei Deng, Xiuhua Gao, Dewen Zhao, Linxiu Du, Di Wu, Guodong Wang. Effect of Ti-enriched Carbonitride on Microstructure and Mechanical Properties of X80 Pipeline Steel[J]. J. Mater. Sci. Technol., 2010, 26(9): 803-809.
[11] Yu Wang,Min Huang,Lei Zhou,Zhixin Cong,Huilin Gao. Improved Fatigue Behavior of Pipeline Steel Welded Joint by Surface Mechanical Attrition Treatment (SMAT)[J]. J. Mater. Sci. Technol., 2009, 25(04): 513-515.
[12] Hao GUO, Guangfu LI, Xun CAI, Ruipeng YANG, Wu YANG. Effect of Cyclic Loading on Cracking Behaviour of X-70 Pipeline Steel in Near-Neutral pH Solutions[J]. J. Mater. Sci. Technol., 2005, 21(04): 459-464.
[13] Hao GUO, Guangfu LI, Xun CAI, Jianjiang ZHOU, Wu YANG. SCC Behaviour of X-70 Pipeline Steel in Near-Neutral pH Solutions[J]. J. Mater. Sci. Technol., 2005, 21(01): 33-38.
[14] Furen XIAO, Mingchun ZHAO, Yiyin SHAN, Bo LIAO, Ke YANG. Processing of Ultralow Carbon Pipeline Steels with Acicular Ferrite[J]. J. Mater. Sci. Technol., 2004, 20(06): 779-781.
[15] Xiaohuai XUE, Luhai WU, Bainian QIAN, Jingli LI, Songnian LOU. Effects of Carbon on the CG HAZ Toughness and Transformation of X80 Pipeline Steel[J]. J. Mater. Sci. Technol., 2003, 19(06): 580-582.
[1] Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel[J]. J. Mater. Sci. Technol., 2020, 47(0): 1 -9 .
[2] Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa[J]. J. Mater. Sci. Technol., 2020, 47(0): 10 -19 .
[3] Wenjing Long, Haining Li, Bing Yang, Nan Huang, Lusheng Liu, Zhigang Gai, Xin Jiang. Research Article Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling’[J]. J. Mater. Sci. Technol., 2020, 48(0): 1 -8 .
[4] Long Chen, Chengtao Yang, Chaoyi Yan. High-performance UV detectors based on 2D CVD bismuth oxybromide single-crystal nanosheets[J]. J. Mater. Sci. Technol., 2020, 48(0): 100 -104 .
[5] Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres[J]. J. Mater. Sci. Technol., 2020, 48(0): 105 -113 .
[6] Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure[J]. J. Mater. Sci. Technol., 2020, 48(0): 114 -122 .
[7] Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd[J]. J. Mater. Sci. Technol., 2020, 48(0): 123 -129 .
[8] Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity[J]. J. Mater. Sci. Technol., 2020, 48(0): 130 -139 .
[9] Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 140 -145 .
[10] H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 146 -155 .
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.