Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 45 Issue (0): 162-175    DOI: 10.1016/j.jmst.2019.11.016
Research Article Current Issue | Archive | Adv Search |
Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding
Mariana X. Milagrea,*(), Uyime Donatusa, Naga V. Mogilib, Rejane Maria P. Silvaa, Bárbara Victória G. de Viveirosa, Victor F. Pereirab, Renato A. Antunesc, Caruline S.C. Machadoa, João Victor S. Araujoa, Isolda Costaa
a Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, São Paulo, Brazil
b Laboratório Nacional de Nanotecnologia, LNNano/CNPEN, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Brazil
c Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, UFABC, Av. dos Estados 5001, Santo André, Brazil
Download:  HTML  PDF(9013KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Scanning electrochemical microscopy (SECM) and scanning vibrating electrode technique (SVET) were used to investigate the electrochemical behaviour of the top surface of the 2098-T351 alloy welded by friction stir welding (FSW). The SVET technique was efficient in identifying the cathodic and anodic weld regions. The welding joint (WJ), which comprises the thermomechanically affected zone (TMAZ) and the stir zone (SZ), was cathodic relative to the heated affected zone (HAZ) and the base metal (BM). The reactivities of the welding joint at the advancing side (AS) and the retreating side (RS) were analyzed and compared using SECM technique in the competition mode by monitoring the dissolved oxygen as a redox mediator in 0.005 mol L-1 NaCl solution. The RS was more electrochemically active than the AS, and these results were correlated with the microstructural features of the welded alloy.

Key words:  Aluminum alloys      Friction stir welding      Localized corrosion     
Received:  10 June 2019     
Corresponding Authors:  Mariana X. Milagre     E-mail:  marianamilagre@yahoo.com.br

Cite this article: 

Mariana X. Milagre, Uyime Donatus, Naga V. Mogili, Rejane Maria P. Silva, Bárbara Victória G. de Viveiros, Victor F. Pereira, Renato A. Antunes, Caruline S.C. Machado, João Victor S. Araujo, Isolda Costa. Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding. J. Mater. Sci. Technol., 2020, 45(0): 162-175.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2019.11.016     OR     https://www.jmst.org/EN/Y2020/V45/I0/162

Fig. 1.  Optical macrographs of the surface of the friction stir weldment of the 2098-T351 alloy showing the welding zones at the retreating side (RS) and advancing side (AS) of the weldment. TMAZ is the thermomechanical affected zone, HAZ is the heated affected zone and WJ is the welding joint which corresponds to the stir zone (SZ) and the TMAZ.
Fig. 2.  Schematic diagram of the 2098-T351 alloy welded by FSW showing the regions (red rectangles) analyzed by SVET.
Fig. 3.  Optical images of the surface of the 2098-T351 alloy welded by FSW after various immersion times in 0.005 mol L-1 NaCl solution.
Fig. 4.  Optical images in high magnification of the squared regions in Fig. 3 of the 2098-T351 alloy welded by FSW after various immersion times in 0.005 mol L-1 NaCl solution.
Fig. 5.  EDX analysis of the (a) Cu-rich and (b) Cu, Fe-rich micrometric particles in the 2098-T351 alloy.
Fig. 6.  SEM micrographs showing the distribution and sizes of the micrometric particles in the (a) welding joint and (b) base metal of the 2098-T351 alloy.
Fig. 7.  TEM bright-field images showing nano-sized phases distributions in the (a) base metal (BM), (b) heated affected zone (HAZ) and (c, d) welding joint (WJ).
Fig. 8.  Agar visualization test for different configurations of the 2098-T351 alloy welded by FSW: (a) galvanic coupling between the welding joint and the heat-affected zone (WJ/HAZ) for both the retreating (RS) and advancing (AS) sides; (b) three differently separated regions of the weldment comprising the base metal and HAZ (BM/HAZ) and the thermomechanical affected zone and stir zone (TMAZ/SZ) or WJ.
Fig. 9.  High-resolution XPS spectra obtained in the welding joint (WJ) of the 2098-T351 alloy welded by FSW prior to (polished) and after (corroded) 24 h immersion in 0.005 mol L-1 NaCl solution.
Fig. 10.  Open circuit potential (OCP) measurements as a function of time of immersion in 0.005 mol L-1 NaCl solution for the different welding zones. Measurements were obtained every 2 h for 24 h.
Fig. 11.  SVET maps of the welded 2098-T351 alloy after 2 h of immersion in 0.005 mol L-1 NaCl solution.
Fig. 12.  SVET maps (a-c) and in situ optical images (d-f) of the 2098-T351 alloy welded by FSW after 24 h immersion in 0.005 mol L-1 NaCl solution.
Fig. 13.  Optical profilometry images of the corroded surfaces of the welding zones of the 2098-T351 alloy after 24 h of immersion in 0.005 mol L-1 NaCl solution: (a) HAZ (RS); (b) WJ; (c) HAZ(AS); (d) depth penetration profile relative to dashed lines in (a-c).
Fig. 14.  SECM maps corresponding to the TMAZ/HAZ boundary in the (a) RS and (b) AS of the welding joint in 0.005 mol L-1 NaCl solution; (c) welded 2098-T351 alloy after 8 h of immersion in 0.005 mol L-1 NaCl solution; welding zones features in the (d) RS and (e) AS, revealed after etching (2% HF and 25% HNO3).
Fig. 15.  Plots correlating the microhardness across the top surface of the weld with the SECM line scan plot along the welding joint.
[1] R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R 50 (2005) 1-78.
doi: 10.1016/j.mser.2005.07.001
[2] R. Nandan, T. Debroy, H.K.D.H. Bhadeshia, Prog. Mater. Sci. 53 (2008) 980-1023.
doi: 10.1016/j.pmatsci.2008.05.001
[3] P.L. Threadgill, A.J. Leonard, H.R. Shercliff, P.J. Withers, Int. Mater. Rev. 54 (2009) 49-93.
doi: 10.1179/174328009X411136
[4] M.X. Milagre, N.V. Mogili, U. Donatus, R.A.R. Giorjão, M. Terada, J.V.S. Araujo, C.S.C. Machado, I. Costa, Mater. Charact. 140 (2018) 233-246.
doi: 10.1016/j.matchar.2018.04.015
[5] A.K. Shukla, W.A. Baeslack, Scr. Mater. 56 (2007) 513-516.
doi: 10.1016/j.scriptamat.2006.11.028
[6] Y. Deng, B. Peng, G. Xu, Q. Pan, Z. Yin, Corros. Sci. (2015) 52-72.
[7] K. Dudzik, J. Kones, Powertrain Transp. 21 (2014) 75-80.
[8] F. Martins Queiroz, U. Donatus, O. Maurício Prada Ramirez, J. Victor de Sousa Araujo, B. Victoria Gonçalves de Viveiros, S. Lamaka, M. Zheludkevich, M. Masoumi, V. Vivier, I. Costa, H. Gomes de Melo , Electrochim. Acta 313 (2019) 271-281.
doi: 10.1016/j.electacta.2019.04.137
[9] American Society for Materials, ASM Handbook Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 2001.
[10] C. Giummarra, B. Thomas, R. Rioja, Proc. Light Met. Technol. Conf. 2007(2007).
[11] P. Lequeu, K.P. Smith, A. Daniélou , J. Mater. Eng. Perform. 19 (2010) 841-847.
doi: 10.1007/s11665-009-9554-z
[12] J. Demopoulos, Corrosion Resistance of Silane Coatings on Aluminum and Magnesium Alloys, Ph.D. Thesis, The University of Akron, 2017.
[13] U. Donatus, B.V.G. de Viveiros, M.C. de Alencar, R.O. Ferreira, M.X. Milagre, I. Costa, Mater. Charact. 144 (2018) 99-112.
doi: 10.1016/j.matchar.2018.07.004
[14] X.X. Zhang, B. Liu, X.R. Zhou, J.J. Wang, C. Luo, Z.H. Sun, Z.H. Tang, F. Lu, Corrosion 73 (2017) 988-997.
doi: 10.5006/2418
[15] C. Machado, U. Donatus, M. Xavier Milagre, N. Mogili, R. Giorjão, R. Klumpp, J.V. Araujo, R. Ferreira, I. Costa, Corrosion 75 (2019) 628-640.
doi: 10.5006/3054
[16] V. Proton, J. Alexis, E. Andrieu, J. Delfosse, M.C. Lafont, C. Blanc, Corros. Sci. 73 (2013) 130-142.
doi: 10.1016/j.corsci.2013.04.001
[17] V. Proton, J. Alexis, E. Andrieu, C. Blanc, J. Delfosse, L. Lacroix, G. Odemer , J. Electrochem. Soc. 158 (2011) C139-C147.
doi: 10.1149/1.3562206
[18] J. Corral, E. a Trillo, Y. Li, L.E. Murr , J. Mater. Sci. Lett. (2000) 2117-2122.
[19] Y.E. Ma, Z.C. Xia, R.R. Jiang, W.Y. Li, Eng. Fract. Mech. 114 (2013) 1-11.
doi: 10.1016/j.engfracmech.2013.10.010
[20] A. Cho, United States Patent, No. US 7 229 509 B2, 2007.
[21] P.N. Eswara, A.A. Gokhale, R.J.H. Wanhill, Aluminum-Lithium Alloys: Processing, Properties, and Applications, Butterworth-Heinemann, Oxford, 2014.
[22] T. Warner, Mater. Sci.Forum 519-521 (2006) 1271-1278.
[23] M.X. Milagre, U. Donatus, C.S.C. Machado, J.V.S. Araujo, R.M.P. da Silva, B.V.G. de Viveiros, A. Astarita, I. Costa , Corros. Eng. Sci. Technol. (2019) 1-11.
[24] H.G. Salem, J.S. Lyons , J. Mater. Eng. Perform. 11 (2002) 384-391.
doi: 10.1361/105994902770343908
[25] P.S. De, R.S. Mishra, J.A.A. Baumann, Acta Mater. 59 (2011) 5946-5960.
doi: 10.1016/j.actamat.2011.06.003
[26] E. Ghanbari, A. Saatchi, X. Lei, D. Kovalov, D.D. Macdonald, USA, 2017.
[27] R.M.P. Silva, M.X. Milagre, L.A. Oliveira, U. Donatus, R.A. Antunes, I. Costa, Surf. Interface Anal. 51 (2019) 982-992.
doi: 10.1002/sia.v51.10
[28] J.V. de Sousa Araujo, U. Donatus, F.M. Queiroz, M. Terada, M.X. Milagre, M.C. de Alencar, I. Costa, Corros. Sci. 133 (2018) 132-140.
doi: 10.1016/j.corsci.2018.01.028
[29] U. Donatus, G.E. Thompson, J.A. Omotoyinbo, K.K. Alaneme, S. Aribo, O.G. Agbabiaka, Trans. Nonferrous Met. Soc. China 27 (2017) 55-62.
doi: 10.1016/S1003-6326(17)60006-2
[30] U. Donatus, L.O. Berbel, I. Costa, Mater. Corros. 69 (2018) 1375-1388.
[31] R.M. Souto, L. Fernández-Mérida, S. González, Electroanalysis 21 (2009) 2640-2646.
[32] R.M. Souto, Y. González-Garciía, S. González, Corros. Sci. 47 (2005) 3312-3323.
[33] A.C. Bastos, A.M. Simões, S. González, Y. González-García, R.M. Souto, Electrochem. Commun. 6 (2004) 1212-1215.
[34] J.C.B. Bertoncello, S.M. Manhabosco, L.F.P. Dick, Corros. Sci. 94 (2015) 359-367.
[35] C.P. de Abreu, I. Costa, H.G. de Melo, N. Pébère, B. Tribollet, V. Vivier, J. Electrochem. Soc. 164 (2017) C735-C746.
[36] A. Davoodi, J. Pan, C. Leygraf, S. Norgren, Appl. Surf. Sci. 252 (2006) 5499-5503.
[37] A. Davoodi, J. Pan, C. Leygraf, S. Norgren, Electrochim. Acta 52 (2007) 7697-7705.
[38] D. Sidane, E. Bousquet, O. Devos, M. Puiggali, M. Touzet, V. Vivier, A. Poulon-Quintin , J. Electroanal. Chem. 737 (2015) 206-211.
[39] M. Jariyaboon, A.J. Davenport, R. Ambat, B.J. Connolly, S.W. Williams, D.A. Price, Corros. Sci. 49 (2007) 877-909.
[40] A.J. Bard, F.R.F. Fan, J. Kwak, O. Lev, Anal. Chem. 61 (1989) 132-138.
[41] D.V. Esposito, J.B. Baxter, J. John, N.S. Lewis, T.P. Moffat, T. Ogitsu, G.D. O’Neil, T.A. Pham, A.A. Talin, J.M. Velazquez, B.C. Wood, Energy Environ. Sci. 8 (2015) 2863-2885.
[42] R.M. Souto, L. Fernández-Mérida, S. González, Electroanalysis 21 (2009) 2640-2646.
[43] A. Aballe, M. Bethencourt, F.J. Botana, M.J. Cano, M. Marcos, Corros. Sci. 43 (2001) 1657-1674.
[44] E.V. Koroleva, G.E. Thompson, G. Hollrigl, M. Bloeck, Corros. Sci. 41 (1999) 1475-1495.
[45] J.F. Li, C.X. Li, Z.W. Peng, W.J. Chen, Z.Q. Zheng , J. Alloys Compd. 460 (2008) 688-693.
[46] G. Buchheit Jr., J.P. Moran, Corrosion 46 (1990) 610-617.
[47] U. Donatus, M. Terada, C.R. Ospina, F.M. Queiroz, A.F.S. Bugarin, I. Costa, Corros. Sci. 131 (2018) 300-309.
[48] J.V. de Sousa Araujo, A.de Fátima Santos Bugarin, U. Donatus, C. de Souza Carvalho Machado, F.M. Queiroz, M. Terada, A. Astarita, I. Costa, Corros. Eng.Sci. Technol. 54 (2019) 575-586.
[49] K. Ogle, M. Serdechnova, M. Mokaddem, P. Volovitch, Electrochim. Acta 56 (2011) 1711-1718.
[50] M. Serdechnova, P. Volovitch, F. Brisset, K. Ogle, Electrochim. Acta 124 (2014) 9-16.
[51] M. Mokaddem, P. Volovitch, F. Rechou, R. Oltra, K. Ogle, Electrochim. Acta 55 (2010) 3779-3786.
[52] T.T.M. Tran, B. Tribollet, E.M.M. Sutter, Electrochim. Acta 216 (2016) 58-67.
[53] F.D. Zhang, H. Liu, C. Subka, Y.X. Liu, Z. Liu, W. Guo, Y.M. Cheng, S.L. Zhang, L. Li, Appl. Surf. Sci. 435 (2017) 452-461.
[54] S.A. Kulinich, A.S. Akhtar, P.C. Wong, K.C. Wong, K.A.R. Mitchell, Thin Solid Films 515 (2007) 8386-8392.
[55] R. Grilli, M.A. Baker, J.E. Castle, B. Dunn, J.F. Watts, Corros. Sci. 52 (2010) 2855-2866.
[56] P. Campestrinia, H. Terryna, A. Hovestad, J.H. W. de Wit, Surf.Coat. Technol. 176 (2004) 365-381.
[57] R. Viroulaud, J. Światowska, A. Seyeux, S. Zanna, J. Tardelli, P. Marcus, Appl. Surf. Sci. 423 (2017) 927-938.
[58] G.B. Hoflund, Z.F. Hazos, G.N. Salaita, Phys. Rev. B 62 (2000) 11126-11133.
[59] E. Koroleva, G. Thompson, G. Hollrigl, M. Bloeck, Corros. Sci. 41 (1999) 1475-1495.
[60] M. Keddam, C. Kuntz, H. Takenouti, D. Schuster, D. Zuili, Electrochim. Acta 42 (1997) 87-97.
[61] H.N.B. Schmidt, T.L. Dickerson, J.H. Hattel, Acta Mater. 54 (2006) 1199-1209.
[62] X. He, F. Gu, A. Ball, Prog. Mater. Sci. 65 (2014) 1-66.
[1] P. Wang, C.S. Lao, Z.W. Chen, Y.K. Liu, H. Wang, H. Wendrock, J. Eckert, S. Scudino. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting[J]. 材料科学与技术, 2020, 36(0): 18-26.
[2] Liang Wu, Yugang Li, Xianfeng Li, Naiheng Ma, Haowei Wang. Interactions between cadmium and multiple precipitates in an Al-Li-Cu alloy: Improving aging kinetics and precipitation hardening[J]. 材料科学与技术, 2020, 46(0): 44-49.
[3] Zhiqiang Zhang, Changshu He, Ying Li, Lei Yu, Su Zhao, Xiang Zhao. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints[J]. 材料科学与技术, 2020, 43(0): 1-13.
[4] C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates[J]. 材料科学与技术, 2020, 41(0): 105-116.
[5] Qiang Lu, Kai Li, Haonan Chen, Mingjun Yang, Xinyue Lan, Tong Yang, Shuhong Liu, Min Song, Lingfei Cao, Yong Du. Simultaneously enhanced strength and ductility of 6xxx Al alloys via manipulating meso-scale and nano-scale structures guided with phase equilibrium[J]. 材料科学与技术, 2020, 41(0): 139-148.
[6] Weijie Ren, Dejia Liu, Qing Liu, Renlong Xin. Influence of texture distribution in magnesium welds on their non-uniform mechanical behavior: A CPFEM study[J]. 材料科学与技术, 2020, 46(0): 168-176.
[7] Zhen Ma, Huarui Zhang, Wei Song, Xiaoyan Wu, Lina Jia, Hu Zhang. Pressure-driven mold filling model of aluminum alloy melt/semi-solid slurry based on rheological behavior[J]. 材料科学与技术, 2020, 39(0): 14-21.
[8] Yongxian Huang, Yuming Xie, Xiangchen Meng, Junchen Li, Li Zhou. Joint formation mechanism of high depth-to-width ratio friction stir welding[J]. 材料科学与技术, 2019, 35(7): 1261-1269.
[9] H. Zhang, P. Xue, D. Wang, L.H. Wu, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effect of heat-input on pitting corrosion behavior of friction stir welded high nitrogen stainless steel[J]. 材料科学与技术, 2019, 35(7): 1278-1283.
[10] X.C. Liu, Y.F. Sun, T. Nagira, K. Ushioda, H. Fujii. Evaluation of dynamic development of grain structure during friction stir welding of pure copper using a quasi in situ method[J]. 材料科学与技术, 2019, 35(7): 1412-1421.
[11] X.H. Zeng, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructural evolution of aluminum alloy during friction stir welding under different tool rotation rates and cooling conditions[J]. 材料科学与技术, 2019, 35(6): 972-981.
[12] Q. Chu, W.Y. Li, H.L. Hou, X.W. Yang, A. Vairis, C. Wang, W.B. Wang. On the double-side probeless friction stir spot welding of AA2198 Al-Li alloy[J]. 材料科学与技术, 2019, 35(5): 784-789.
[13] X.X. Zhang, L.H. Wu, H. Andrä, W.M. Gan, M. Hofmann, D. Wang, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effects of welding speed on the multiscale residual stresses in friction stir welded metal matrix composites[J]. 材料科学与技术, 2019, 35(5): 824-832.
[14] Jing Xue, Shenbao Jin, Xianghai An, Xiaozhou Liao, Jiehua Li, Gang Sha. Understanding formation of Mg-depletion zones in Al-Mg alloys under high pressure torsion[J]. 材料科学与技术, 2019, 35(5): 858-864.
[15] Peipei Ma, Chunhui Liu, Ziyao Ma, Lihua Zhan, Minghui Huang. Formation of a new intermediate phase and its evolution toward θ' during aging of pre-deformed Al-Cu alloys[J]. 材料科学与技术, 2019, 35(5): 885-890.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.