Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 43 Issue (0): 1-13    DOI: 10.1016/j.jmst.2019.12.007
Research Article Current Issue | Archive | Adv Search |
Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints
Zhiqiang Zhangab, Changshu Heab*(), Ying Liab, Lei Yuc, Su Zhaoc, Xiang Zhaoab
a School of Materials Science & Engineering, Northeastern University, Shenyang 110819, China
b Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110819, China
c Ningbo Institute of Industrial Technology Chinese Academy of Sciences, Ningbo 315201, China
Download:  HTML  PDF(10012KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Conventional friction stir welding (FSW) and ultrasonic assisted friction stir welding (UAFSW) were employed to weld 6-mm thick 7N01-T4 aluminum alloy plates. Weld forming characteristics and material flow behavior in these two different welding processes were studied and compared. Ultrasonic vibration was applied directly on the weld in axial direction through the welding tool. Metal flow behavior, microstructure characteristics in the nugget zone (NZ) and evolution of the mechanical properties of naturally aged joints were studied. Results show that the ultrasonic vibration can significantly increase the welding speed of defect-free welded joint. At the rotation speed of 1200 rpm, the UAFSW can produce defect-free welded joints at a welding speed that is 50% higher than that of the conventional FSW. Ultrasonic vibrations can also improve surface quality of the joints and reduce axial force by 9%. Moreover, ultrasonic vibrations significantly increase the volume of the pin-driven zone (PDZ) and decrease the thickness of the transition zone (TZ). The number of subgrains and deformed grains resulting from the UAFSW is higher than that from the FSW. By increase the strain level and strain gradient in the NZ, the ultrasonic vibrations can refine the grains. Ultrasonic energy is the most at the top of the NZ, and gradually reduces along the thickness of the plate. The difference in strengths between the FSW and the UAFSW joints after post-weld natural aging (PWNA) is small. However, the elongation of the UAFSW is 8.8% higher than that of the FSW (PWNA for 4320 h). Fracture surface observation demonstrates that all the specimens fail by ductile fracture, and the fracture position of the UAFSW joint changes from HAZ (PWNA for 120 h) to NZ (PWNA for 720 and 4320 h).

Key words:  Ultrasonic-assisted friction stir welding      Aluminum alloy      Material flow behavior      Microstructure      Mechanical property      Natural aging     
Received:  15 October 2019     
Corresponding Authors:  He Changshu     E-mail:  changshuhe@mail.neu.edu.cn

Cite this article: 

Zhiqiang Zhang, Changshu He, Ying Li, Lei Yu, Su Zhao, Xiang Zhao. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints. J. Mater. Sci. Technol., 2020, 43(0): 1-13.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2019.12.007     OR     https://www.jmst.org/EN/Y2020/V43/I0/1

Si Fe Cu Mn Mg Cr Zn V Zr Ti Al
0.074 0.163 0.076 0.435 1.03 0.016 4.48 0.015 0.2 0.021 Balance
Table 1  Chemical composition of the 7N01 aluminum alloy (wt%).
Fig. 1.  (a) Schematic diagram of UAFSW system and (b) experimental setup of UAFSW.
Fig. 2.  (a) Schematic diagram of pure aluminum foil (marker material) position and (b) sketch map of welding process.
Fig. 3.  Macrostructure of the FSW joints obtained at different welding speeds: (a) 80 mm/min, (b) 160 mm/min, (c) 200 mm/min and (d) 240 mm/min.
Fig. 4.  Macrostructure of the UAFSW joints obtained at different welding speeds: (a) 80 mm/min, (b) 160 mm/min, (c) 200 mm/min, (d) 240 mm/min, (e) 300 mm/min and (f) 340 mm/min.
Fig. 5.  Tunneling defect of the joints: (a) FSW-240 mm/min and (b) UAFSW-340 mm/min.
Fig. 6.  Comparison of surface topography of the joints: (a) surface appearance of the joint, (b) surface profile results, (c) 3D morphology of FSW and (d) 3D morphology of UAFSW.
Fig. 7.  Variation of the Z-axis force with time in FSW and UAFSW experiments.
Fig. 8.  Cross-sectional macrographs of the joints: (a) FSW and (b) UAFSW.
Fig. 9.  Microstructures in the TZ: (a) FSW and (b) UAFSW.
Fig. 10.  Distribution of deformed aluminum foil in the SDZ of joints: (a) FSW and (b) UAFSW.
Fig. 11.  Optical micrographs of the interface between the NZ and the thermo-mechanically affected zone (TMAZ): (a) FSW and (b) UAFSW.
Fig. 12.  Distribution of deformed aluminum foil in the PDZ and SWZ of the joints: (a) FSW and (b) UAFSW.
Fig. 13.  EBSD grain boundary maps at various depths in the NZ of the joints: (a) FSW-1 mm, (b) UAFSW-1 mm, (c) FSW-3 mm, (d) UAFSW-3 mm, (e) FSW-5 mm and (f) UAFSW-5 mm.
Detection
region
Average grain size (μm) Standard deviation of AGS Proportion of recrystallized
grains (%)
Proportion of substructured
grains (%)
Proportion of deformed
grains (%)
FSW-1mm 5.8 ±3.51 81.4 15.3 3.3
UAFSW-1mm 4.7 ±2.81 76.8 17.3 5.9
FSW-3mm 5.0 ±3.45 81.2 14.2 4.6
UAFSW-3mm 4.1 ±2.76 78.2 14.9 6.9
FSW-5mm 3.5 ±2.03 80.9 9.6 9.5
UAFSW-5mm 3.4 ±2.04 79.8 9.7 10.5
Table 2  Average grain size and the proportion of different types of grains at different depths in the NZ of the joints.
Fig. 14.  (a) Magnified grain boundary map of rectangle in Fig. 13(a) and (b) magnified grain boundary map of rectangle in Fig. 13(b).
Fig. 15.  Grain size distribution of NZ at various depths of the joints: (a) 1 mm from the top surface, (b) 3 mm from the top surface and (c) 5 mm from the top surface.
Fig. 16.  Microhardness profiles along the mid-thickness of the joints for different natural aging times: (a) 120 h, (b) 720 h and (c) 4320 h.
Fig. 17.  Mechanical properties of the BM and the joints at different natural aging times.
Fig. 18.  Tensile fracture locations of the joints after 120 h of PWNA: (a) FSW, (b) UAFSW, (c) side view of FSW and (d) side view of UAFSW.
Fig. 19.  Fracture surfaces of the tensile samples after 120 h of PWNA: (a) top of NZ in FSW, (b) magnified image of rectangle region in (a), (c) HAZ of UAFSW and (d) magnified image of rectangle region in (c).
Fig. 20.  Tensile fracture locations and fracture surfaces of the tensile samples after 720 and 4320 h of PWNA: (a); (c) FSW, (b); (d) UAFSW, (e) fracture surface of FSW after 4320 h of PWNA and (f) fracture surface of UAFSW after 4320 h of PWNA.
[1] X.H. Zeng, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma, J. Mater. Sci. Technol. 35(2019) 972-981.
[2] Y.Q. Mao, L.M. Ke, Y.H. Chen, F.C. Liu, L. Xing, J. Mater. Sci. Technol. 34(2018) 228-236.
[3] J. Zhao, F. Jiang, H.G. Jian, K. Wen, L. Jiang, X.B. Chen, Mater. Des. 31(2010) 306-311.
[4] D. Texier, F. Atmani, P. Bocher, F. Nadeau, J. Chen, Y. Zedan, N. Vanderesse, V. Demers, Int. J. Fatigue 116 (2018) 220-233.
[5] V. Fahimpour, S.K. Sadrnezhaad, F. Karimzadeh, Mater. Des. 39(2012) 329-333.
[6] H.J. Aval, Mater. Des. 67(2015) 413-421.
[7] G.Q. Wang, Y.H. Zhao, Y.F. Hao, J. Mater. Sci. Technol. 34(2018) 73-91.
[8] Z.L. Liu, H.T. Cui, S.D. Ji, M.Q. Xu, X.C. Meng, J. Mater. Sci. Technol. 32(2016) 1372-1377.
[9] S. Malopheyev, I. Vysotskiy, V. Kulitskiy, S. Mironov, R. Kaibyshev, Mater. Sci. Eng. A 662 (2016) 136-143.
[10] M.S. Khorrami, M. Kazeminezhad, A.H. Kokabi, Mater. Sci. Eng. A 543 (2012) 243-248.
[11] F.Z. Yang, J. Zhou, R.R. Ding, J. Mater. Sci. Technol. 34(2018) 2240-2245.
[12] X.C. Zhuang, J.P. Wang, H. Zheng, Z. Zhao, Trans. Nonferrous Met. Soc. China 25 (2015) 2352-2360.
[13] J.C. Hung, Y.C. Tsai, Mater. Sci. Eng. A 580 (2013) 125-132.
[14] K. Park, The University of Michigan, 2009.
[15] Y. Rostamiyan, A. Seidanloo, H. Sohrabpoor, R. Teimouri, Acme 15 (2015) 335-346.
[16] M. Thom?, G. Wagner, B. Stra?, B. Wolter, S. Benfer, W. Fürbeth, J. Mater. Sci. Technol. 34(2018) 163-172.
[17] X.C. Meng, Y.Y. Jin, S.D. Ji, D.J. Yan, J. Mater. Sci. Technol. 34(2018) 1817-1822.
[18] X.C. Liu, C.S. Wu, Mater. Des. 90(2016) 350-358.
[19] X.C. Liu, C.S. Wu, J. Mater. Process. Technol. 225(2015) 32-44.
[20] L. Shi, C.S. Wu, X.C. Liu, J. Mater. Process. Technol. 222(2015) 91-102.
[21] Y.B. Zhong, C.S. Wu, G.K. Padhy, J. Mater. Process. Technol. 239(2017) 273-283.
[22] X.C. Liu, C.S. Wu, G.K. Padhy, Scr. Mater. 102(2015) 95-98.
[23] G.K. Padhy, C.S. Wu, S. Gao, L. Shi, Mater. Des. 92(2016) 710-723.
[24] G.K. Padhy, C.S. Wu, S. Gao, Mater. Lett. 183(2016) 34-39.
[25] Y.Y. Hu, H.J. Liu, H. Fujii, J. Mater. Process. Technol. 271(2019) 75-84.
[26] R.L. Lai, D.Q. He, L.C. Liu, S.Y. Ye, K.Y. Yang, Int. J. Adv. Manuf. Technol. 73(2014) 321-327.
[27] S. Amini, M.R. Amiri, Int. J. Adv. Manuf. Technol. 73(2014) 127-135.
[28] Y. Tao, D.R. Ni, B.L. Xiao, Z.Y. Ma, W. Wu, R.X. Zhang, Y.S. Zeng, Mater. Sci. Eng. A 693 (2017) 1-13.
[29] Z. Zhang, B.L. Xiao, Z.Y. Ma, Metall. Mater. Trans. A 44A (2013) 4081-4097.
[30] H.L. Hao, D.R. Ni, H. Huang, D. Wang, B.L. Xiao, Z.R. Nie, Z.Y. Ma, Mater. Sci. Eng. A 559 (2013) 889-896.
[31] Y.Q. Mao, L.M. Ke, F.C. Liu, Y.H. Chen, L. Xing, Int. J. Adv. Manuf. Technol. 88(2017) 949-960.
[32] V.M. Linton, M.I. Ripley, Acta Mater. 56(2008) 4319-4327.
[33] K. Kumar, S.V. Kailas, Mater. Sci. Eng. A 485 (2008) 367-374.
[34] Y.X. Huang, Y.M. Xie, X.C. Meng, J.C. Li, L. Zhou, J. Mater. Sci. Technol. 35(2019) 1261-1269.
[35] R.K. Dutta, R.H. Petrov, R. Delhez, M.J.M. Hermans, I.M. Richardson, A.J. B?tger, Acta Mater. 61(2013) 1592-1602.
[36] S.D. Ji, S.Y. Niu, J.G. Liu, J. Mater. Sci. Technol. 35(2019) 1712-1718.
[37] Z.H. Yao, G.Y. Kim, Z.H. Wang, L. Faidley, Q.Z. Zou, D.Q. Mei, Z.C. Chen, Int. J. Plast. 39(2012) 75-87.
[38] V.C. Kumar, I.M. Hutchings, Tribol. Int. 37(2004) 833-840.
[39] Y.X. Huang, Y.B. Wang, L. Wan, H.S. Liu, J.J. Shen, J.F.D. Santos, L. Zhou, J.C. Feng, Int. J. Adv. Manuf. Technol. 87(2016) 1115-1123.
[40] D. Yadav, R. Bauri, Mater. Sci. Eng. A 539 (2012) 85-92.
[41] J.Q. Su, T.W. Nelson, R. Mishra, M. Mahoney, Acta Mater. 51(2003) 713-729.
[42] K.W. Siu, A.H.W. Ngan, I.P. Jones, Int. J. Plast. 27(2011) 788-800.
[43] R. Nandan, G.G. Roy, T. Debroy, Metall. Mater. Trans. A 37A (2006) 1247-1259.
[44] Y.Q. Mao, L.M. Ke, F.C. Liu, Y.H. Chen, L. Xing, Int. J. Adv. Manuf. Technol. 86(2016) 141-154.
[45] J.J. Jeon, S. Mironov, Y.S. Sato, H. Kokawa, S.H.C. Park, S. Hirano, Metall. Mater. Trans. A 44A (2013) 3157-3166.
[46] T. Azimzadegan, S. Serajzadeh, J. Mater. Eng. Perf. 19(2010) 1256-1263.
[47] H.Y. Zhou, H.Z. Cui, Q.H. Qin, H. Wang, Y.G. Shen, Mater. Sci. Eng. A 682 (2017) 376-388.
[48] Z.H. Yao, G.Y. Kim, L.A. Faidley, Q.Z. Zou, D.Q. Mei, Z.C. Chen, J. Mater. Process. Technol. 212(2012) 640-646.
[49] N.M. Han, X.M. Zhang, S.D. Liu, B. Ke, X. Xin, Mater. Sci. Eng. A 528 (2011) 3714-3721.
[50] C.T. Canaday, M.A. Moore, W. Tang, A.P. Reynolds, Mater. Sci. Eng. A 559 (2013) 678-682.
[51] I. Kalemba, C. Hamilton, S. Dymek, Mater. Des. 60(2014) 295-301.
[52] C.B. Fuller, M.W. Mahoney, M. Calabrese, L. Micona, Mater. Sci. Eng. A 527 (2010) 2233-2240.
[53] W.T. Huo, J.T. Shi, L.G. Hou, J.S. Zhang, J. Mater. Process. Technol. 239(2017) 303-314.
[1] P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion[J]. 材料科学与技术, 2020, 45(0): 98-107.
[2] Liang Wu, Yugang Li, Xianfeng Li, Naiheng Ma, Haowei Wang. Interactions between cadmium and multiple precipitates in an Al-Li-Cu alloy: Improving aging kinetics and precipitation hardening[J]. 材料科学与技术, 2020, 46(0): 44-49.
[3] Lijin Dong, Cheng Ma, Qunjia Peng, En-Hou Han, Wei Ke. Microstructure and stress corrosion cracking of a SA508-309L/308L-316L dissimilar metal weld joint in primary pressurized water reactor environment[J]. 材料科学与技术, 2020, 40(0): 1-14.
[4] Wei Fu, Xiaoguo Song, Ruichen Tian, Yuzhen Lei, Weimin Long, Sujuan Zhong, Jicai Feng. Wettability and joining of SiC by Sn-Ti: Microstructure and mechanical properties[J]. 材料科学与技术, 2020, 40(0): 15-23.
[5] B.W. Dong, S.H. Wang, Z.Z. Dong, J.C. Jie, T.M. Wang, T.J. Li. Novel insight into dry sliding behavior of Cu-Pb-Sn in-situ composite with secondary phase in different morphology[J]. 材料科学与技术, 2020, 40(0): 158-167.
[6] Yujuan Li, Yingkang Wei, Xiaotao Luo, Changjiu Li, Ninshu Ma. Correlating particle impact condition with microstructure and properties of the cold-sprayed metallic deposits[J]. 材料科学与技术, 2020, 40(0): 185-195.
[7] Z.C. Luo, H.P. Wang. Primary dendrite growth kinetics and rapid solidification mechanism of highly undercooled Ti-Al alloys[J]. 材料科学与技术, 2020, 40(0): 47-53.
[8] Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J]. 材料科学与技术, 2020, 40(0): 88-98.
[9] Shaoning Geng, Ping Jiang, Xinyu Shao, Lingyu Guo, Xuesong Gao. Heat transfer and fluid flow and their effects on the solidification microstructure in full-penetration laser welding of aluminum sheet[J]. 材料科学与技术, 2020, 46(0): 50-63.
[10] Xiaoyang Yi, Bin Sun, Weihong Gao, Xianglong Meng, Zhiyong Gao, Wei Cai, Liancheng Zhao. Microstructure evolution and superelasticity behavior of Ti-Ni-Hf shape memory alloy composite with multi-scale and heterogeneous reinforcements[J]. 材料科学与技术, 2020, 42(0): 113-121.
[11] S.M. Liang, H.M. Ji, X.W. Li. Thickness-dependent mechanical properties of nacre in Cristaria plicata shell: Critical role of interfaces[J]. 材料科学与技术, 2020, 44(0): 1-8.
[12] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
[13] Peipei Ma, Chunhui Liu, Qiuyu Chen, Qing Wang, Lihua Zhan, Jianjun Li. Natural-ageing-enhanced precipitation near grain boundaries in high-strength aluminum alloy[J]. 材料科学与技术, 2020, 46(0): 107-113.
[14] Jialin Wu, Li Jin, Jie Dong, Fenghua Wang, Shuai Dong. The texture and its optimization in magnesium alloy[J]. 材料科学与技术, 2020, 42(0): 175-189.
[15] L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang, J.W. Qiao. Effect of environments and normal loads on tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys[J]. 材料科学与技术, 2020, 42(0): 85-96.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.