Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 46 Issue (0): 168-176    DOI: 10.1016/j.jmst.2020.01.035
Research Article Current Issue | Archive | Adv Search |
Influence of texture distribution in magnesium welds on their non-uniform mechanical behavior: A CPFEM study
Weijie Rena, Dejia Liub, Qing Liua,c, Renlong Xina,*()
aJoint International Laboratory for Light Alloys (MOE), College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
bCollege of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
cKey Laboratory for Light-weight Materials, Nanjing Tech University, Nanjing 211816, China
Download:  HTML  PDF(4485KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Recent studies indicate that the texture distribution in friction stir welded (FSW) Mg alloys can be tailored and hence improve the joint performance. In this work, a crystal plasticity finite element modeling (CPFEM) was performed to understand the effects of texture distribution in stir zone (SZ) on the non-uniform plastic deformation and fracture localization. In total, six kinds of observed or purposely tilted texture distributions were modelled. The “concave-convex” appearance, as commonly observed in the tensile sample, was successfully simulated. It reveals that the mirror-symmetrical distribution of basal planes in the region of easy to activate basal slip (EABS) determined the “concave-convex” appearance in SZ-center. The asymmetrical appearance exchanged on plane A and plane B when the directions of basal planes were switched in the two EABS regions. Furthermore, the asymmetrical feature of plastic deformation was changed with varying the texture distribution in SZ. The “embossed” feature became more obvious in SZ-center first, and then gradually weakened with the c-axis rotated away from the weld plate plane. Severe necking was successfully simulated in SZ-center of FSW-H joint and in SZ-side of FSW-L joint. That might determine the observed fracture morphology. We believe that this simulation study is helpful for further improving the performance of FSW Mg joints.

Key words:  Friction stir welding      Magnesium alloy      CPFEM      Non-uniform deformation      Fracture     
Received:  07 November 2019     
Corresponding Authors:  Renlong Xin     E-mail:  rlxin@cqu.edu.cn

Cite this article: 

Weijie Ren, Dejia Liu, Qing Liu, Renlong Xin. Influence of texture distribution in magnesium welds on their non-uniform mechanical behavior: A CPFEM study. J. Mater. Sci. Technol., 2020, 46(0): 168-176.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2020.01.035     OR     https://www.jmst.org/EN/Y2020/V46/I0/168

Fig. 1.  Non-uniform deformation and fracture features in a tensile sample of FSW Mg joints [26].
Fig. 2.  Finite element model of Mg joints for the tensile test (a); texture distributions in various regions of FSW-H joint (b) and FSW-L joint (c); (0001) pole figure showing the six kinds of observed or purposely tilted texture distributions used in the model (d).
Mode τ0 (MPa) τs (MPa) h0 (MPa) Ath1 Ath2
Basal < a> 10 50 80 - -
Prismatic < a> 70 200 130 - -
Pyramidal < c+a> 121 128 50 - -
Extension twin 28 30 10 0.42 0.4
Table 1  Hardening parameters used for CPFEM simulations.
Fig. 3.  Measured (symbols) and simulated (lines) true stress-strain curves of the two kinds of Mg joints under the uniaxial tension along TD. The insets show the SF maps for {10-12} extension twinning in the transition region between TMAZ and SZ-side.
Fig. 4.  EBSD orientation maps of the transition region between TMAZ and SZ-side on AS and RS after 5% deformation: (a) FSW-H joint and (b) FSW-L joint. The twin volume fractions, measured and simulated {0001} pole figures of each region were displayed nearby the respective EBSD maps.
Fig. 5.  Relative activities of deformation modes in various regions of Mg joints on AS: (a) FSW-H joint and (b) FSW-L joint. Twin volume fraction is also simulated in some representative regions.
Fig. 6.  Distribution of the displacement along z-direction (UZZ) after the simulated tension deformation to certain strains and the observed morphologies of fractured samples [29]: (a) FSW-H joint and (b) FSW-L joint. As indicated, the two joints fractured in different strains during the experimental tests.
Fig. 7.  Distribution of the simulated displacement along y-direction (Uyy): (a) top surface and (b) bottom surface of FSW-H joint; (c) top surface and (d) bottom surface of FSW-L joint. The fracture features of FSW-H joint (e) and FSW-L joint (f) are displayed under the simulation results [29].
Fig. 8.  The depth in WD along Path 1 (Plane A) (a) and Path 2 (Plane B) (b) for the samples modelled with different texture distributions (numbered in 1-6).
Fig. 9.  Distribution of strain components after 8% strain for (a) FSW-H joint and (b) FSW-L joint.
Fig. 10.  Schematic illustration of the distribution of basal planes in a FSW Mg joint (a) and the shear of basal planes in EABS during the tensile test (b)-(c); (d) (0001) projection showing the simulated trends of grain rotation in EABS and SZ-side. H and L in (d) indicate FSW-H joint and FSW-L joint, respectively.
Fig. 11.  The “embossed” feature in FSW-H joint after 8% strain: (a) all deformation modes as described in section 3 are allowed, (b) prismatic slip was prohibited in SZ-center, (c) basal slip was prohibited in EABS, (d) all deformation modes are allowed but exchanging basal plane directions between the left and right EABS regions.
[1] W. Woo, H. Choo, M.B. Prime, Z. Feng, B. Clausen, Acta Mater. 56(2008) 1701-1711.
doi: 10.1016/j.actamat.2007.12.020
[2] U.F.H.R. Suhuddin, S. Mironov, Y.S. Sato, H. Kokawa, C.W. Lee, Acta Mater. 57(2009) 5406-5418.
doi: 10.1016/j.actamat.2009.07.041
[3] Z.Y. Ma, F.C. Liu, R.S. Mishra, Acta Mater. 58(2010) 4693-4704.
doi: 10.1016/j.actamat.2010.05.003
[4] G.K. Padhy, C.S. Wu, S. Gao, J. Mater. Sci. Technol. 34(2018) 1-38.
[5] A. Steuwer, M. Dumont, J. Altenkirch, S. Birosca, A. Deschamps, P.B. Prangnell, P.J. Withers, Acta Mater. 59(2011) 3002-3011.
[6] F.F. Wang, W.Y. Li, J. Shen, Q. Wen, J.F. dos Santos, J.Mater. Sci. Technol. 34(2018) 135-139.
[7] J. Yang, B.L. Xiao, D. Wang, Z.Y. Ma, Mater. Sci. Eng. A 527 (2010) 708-714.
[8] H. N.B.Schmidt, T.L. Dickerson, J.H. Hattel, Acta Mater. 54(2006) 1199-1209.
doi: 10.1016/j.actamat.2005.10.052
[9] G. Chen, Q. Ma, S. Zhang, J. Wu, G. Zhang, Q. Shi, J. Mater. Sci. Technol. 34(2018) 128-134.
[10] R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R 50 (2005) 1-78.
doi: 10.1016/j.mser.2005.07.001
[11] Z.Y. Ma, A.H. Feng, D.L. Chen, J. Shen, Crit. Rev. Solid. State 43 (2018) 269-333.
[12] C.J. Lee, J.C. Huang, X.H. Du, Scr. Mater. 56(2007) 875-878.
[13] J. Chen, H. Fujii, Y. Sun, Y. Morisada, R. Ueji, Mater. Sci. Eng. A 580 (2013) 83-91.
doi: 10.1016/j.msea.2013.05.044
[14] S.H.C. Park, Y.S. Sato, H. Kokawa, Metall. Mater. Trans. A 34 (2003) 987-994.
[15] W. Xunhong, W. Kuaishe, Mater. Sci. Eng. A 431 (2006) 114-117.
[16] W.B. Lee, Y.M. Yeon, S.B. Jung, Mater. Sci. Tech.-Lond. 19(2003) 785-790.
[17] G.M. Xie, Z.Y. Ma, L. Geng, R.S. Chen, Mater. Sci. Eng. A 471 (2007) 63-68.
[18] Y. Huang, Y. Xie, X. Meng, J. Li, L. Zhou, J. Mater. Sci. Technol. 35(2019) 1261-1269.
doi: 10.1016/j.jmst.2019.01.016
[19] S.H. Chowdhury, D.L. Chen, S.D. Bhole, X. Cao, P. Wanjara, Metall. Mater. Trans. A 44 (2013) 323-336.
[20] M.S. Kim, J.Y. Jung, Y.M. Song, S.H. Choi, Int. J. Plast. 94(2017) 24-43.
doi: 10.1016/j.ijplas.2017.02.013
[21] X.X. Zhang, L.H. Wu, H. Andrä, W.M. Gan, M. Hofmann, D. Wang, D.R. Ni, B.L. Xiao, Z.Y. Ma, J. Mater. Sci. Technol. 35(2019) 824-832.
doi: 10.1016/j.jmst.2018.11.005
[22] J. Yang, D. Wang, B.L. Xiao, D.R. Ni, Z.Y. Ma, Metall. Mater. Trans. A 44 (2013) 517-530.
doi: 10.1007/s11661-012-1373-4
[23] J. Yang, D.R. Ni, B.L. Xiao, Z.Y. Ma, Int. J. Fatigue 59 (2014) 9-13.
doi: 10.1016/j.ijfatigue.2013.10.004
[24] F. Pan, A. Xu, D. Deng, J. Ye, X. Jiang, A. Tang, Y. Ran, Mater. Des. 110(2016) 266-274.
doi: 10.1016/j.matdes.2016.07.146
[25] B. Song, Q. Yang, T. Zhou, L. Chai, N. Guo, T. Liu, S.F. Guo, R.L. Xin, J. Mater. Sci. Technol. 35(2019) 2269-2282.
[26] R. Xin, D. Liu, B. Li, L. Sun, Z. Zhou, Q. Liu, Mater. Sci. Eng. A 565 (2013) 333-341.
[27] S. Mironov, T. Onuma, Y.S. Sato, S. Yoneyama, H. Kokawa, Mater. Sci. Eng. A 679 (2017) 272-281.
[28] D. Liu, R. Xin, Y. Xiao, Z. Zhou, Q. Liu, Mater. Sci. Eng. A 609 (2014) 88-91.
doi: 10.1016/j.msea.2014.04.089
[29] R. Xin, D. Liu, X. Shu, B. Li, X. Yang, Q. Liu, J. Alloys. Compd. 670(2016) 64-71.
doi: 10.1016/j.jallcom.2016.02.023
[30] Z.W. Chen, S. Cui, Scr. Mater. 58(2008) 417-420.
doi: 10.1016/j.scriptamat.2007.10.026
[31] P.B. Prangnell, C.P. Heason, Acta Mater. 53(2005) 3179-3192.
doi: 10.1016/j.actamat.2005.03.044
[32] Q. Shang, D.R. Ni, P. Xue, B.L. Xiao, Z.Y. Ma, Mater. Charact. 128(2017) 14-22.
[33] R. Hielscher, H. Schaeben, J. Appl. Crystallogr. 41(2008) 1024-1037.
doi: 10.1107/S0021889808030112
[34] W. Ren, R. Xin, D. Liu, Mater. Sci. Eng. A 762 (2019), 138103.
[35] W. Li, L. Wang, B. Zhou, C. Liu, X. Zeng, J. Mater. Sci. Technol. 35(2019) 2200-2206.
[36] G.J. Yuan, X.C. Zhang, B. Chen, S.T. Tu, C.C. Zhang, J. Mater. Sci. Technol. (2019).
[37] Karlsson Hibbit, Sorenson, ABAQUS User’s Manual, Version 6.5, Karlsson and Sorenson, Inc., Hibbit, 2004.
[38] R.J. Asaro, A. Needleman, Acta Mater. 33(1985) 923-953.
doi: 10.1016/0001-6160(85)90188-9
[39] J.W. Hutchinson, P. Roy, Sco. A-Math. Phys 348 (1976) 101-127.
[40] S.R. Kalidindi, C.A. Bronkhorst, L. Anand, J. Mech, Phys. Solids 40 (1992) 537-569.
doi: 10.1016/0022-5096(92)80003-9
[41] C.N. Tomé, R.A. Lebensohn, U.F. Kocks, Acta Mater. 39(1991) 2667-2680.
[42] S.H. Choi, D.H. Kim, H.W. Lee, E.J. Shin, Mater. Sci. Eng. A 527 (2010) 1151-1159.
[43] R.F.S. Hearmon, Rev. Mod. Phys. 18(1946) 409-440.
[44] Q. Shang, D.R. Ni, P. Xue, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 707 (2017) 426-434.
[45] Q. Shang, D.R. Ni, P. Xue, B.L. Xiao, K.S. Wang, Z.Y. Ma, J. Mater. Process Tech. 264(2019) 336-345.
doi: 10.1016/j.jmatprotec.2018.09.021
[1] Yinling Zhang, Aihan Feng, Shoujiang Qu, Jun Shen, Daolun Chen. Microstructure and low cycle fatigue of a Ti2AlNb-based lightweight alloy[J]. 材料科学与技术, 2020, 44(0): 140-147.
[2] Mariana X. Milagre, Uyime Donatus, Naga V. Mogili, Rejane Maria P. Silva, Bárbara Victória G. de Viveiros, Victor F. Pereira, Renato A. Antunes, Caruline S.C. Machado, João Victor S. Araujo, Isolda Costa. Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding[J]. 材料科学与技术, 2020, 45(0): 162-175.
[3] Yuan Zhang, Guoqi Tan, Da Jiao, Jian Zhang, Shaogang Wang, Feng Liu, Zengqian Liu, Longchao Zhuo, Zhefeng Zhang, Sylvain Deville, Robert O. Ritchie. Ice-templated porous tungsten and tungsten carbide inspired by natural wood[J]. 材料科学与技术, 2020, 45(0): 187-197.
[4] Yong-Xin Yang, Zhe Fang, Yi-Hao Liu, Ya-Chen Hou, Li-Guo Wang, Yi-Fan Zhou, Shi-Jie Zhu, Rong-Chang Zeng, Yu-Feng Zheng, Shao-Kang Guan. Biodegradation, hemocompatibility and covalent bonding mechanism of electrografting polyethylacrylate coating on Mg alloy for cardiovascular stent[J]. 材料科学与技术, 2020, 46(0): 114-126.
[5] Jian Wang, Lanyue Cui, Yande Ren, Yuhong Zou, Jinlong Ma, Chengjian Wang, Zhongyin Zheng, Xiaobo Chen, Rongchang Zeng, Yufeng Zheng. In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31[J]. 材料科学与技术, 2020, 47(0): 52-67.
[6] Sang-Hoon Kim, Sang Won Lee, Byoung Gi Moon, Ha Sik Kim, Sung Hyuk Park. Variation in dynamic deformation behavior and resultant yield asymmetry of AZ80 alloy with extrusion temperature[J]. 材料科学与技术, 2020, 46(0): 225-236.
[7] Xiaoxiao Wei, Li Jin, Fenghua Wang, Jing Li, Nan Ye, Zhenyan Zhang, Jie Dong. High strength and ductility Mg-8Gd-3Y-0.5Zr alloy with bimodal structure and nano-precipitates[J]. 材料科学与技术, 2020, 44(0): 19-23.
[8] Zhiqiang Zhang, Changshu He, Ying Li, Lei Yu, Su Zhao, Xiang Zhao. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints[J]. 材料科学与技术, 2020, 43(0): 1-13.
[9] Xiaogang Li, Kejian Li, Shanlin Li, Yao Wu, Zhipeng Cai, Jiluan Pan. Microstructure and high temperature fracture toughness of NG-TIG welded Inconel 617B superalloy[J]. 材料科学与技术, 2020, 39(0): 173-182.
[10] Qiuyan Huang, Yang Liu, Aiyue Zhang, Haoxin Jiang, Hucheng Pan, Xiaohui Feng, Changlin Yang, Tianjiao Luo, Yingju Li, Yuansheng Yang. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration[J]. 材料科学与技术, 2020, 38(0): 39-46.
[11] Xingrui Chen, Shaochen Ning, Qichi Le, Henan Wang, Qi Zou, Ruizhen Guo, Jian Hou, Yonghui Jia, Andrej Atrens, Fuxiao Yu. Effects of external field treatment on the electrochemical behaviors and discharge performance of AZ80 anodes for Mg-air batteries[J]. 材料科学与技术, 2020, 38(0): 47-55.
[12] Maryam Jamalian, David P.Field. Gradient microstructure and enhanced mechanical performance of magnesium alloy by severe impact loading[J]. 材料科学与技术, 2020, 36(0): 45-49.
[13] R.Z. Xu, Q. Yang, D.R. Ni, B.L. Xiao, C.Z. Liu, Z.Y. Ma. Influencing mechanism of pre-existing nanoscale Al5Fe2 phase on Mg-Fe interface in friction stir spot welded Al-free ZK60-Q235 joint[J]. 材料科学与技术, 2020, 42(0): 220-228.
[14] Jiaxin Zhang, Jinshan Zhang, Fuyin Han, Wei Liu, Longlong Zhang, Rui Zhao, Chunxiang Xu, Jing Dou. Modification of Mn on corrosion and mechanical behavior of biodegradable Mg88Y4Zn2Li5 alloy with long-period stacking ordered structure[J]. 材料科学与技术, 2020, 42(0): 130-142.
[15] Hao Li, Qinghui Zeng, Pengfei Yang, Qi Sun, Jianmin Wang, Jian Tu, Minhao Zhu. Towards understanding twinning behavior near fracture surface in magnesium[J]. 材料科学与技术, 2020, 43(0): 230-237.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.