Please wait a minute...
J. Mater. Sci. Technol.  2019, Vol. 35 Issue (7): 1261-1269    DOI: 10.1016/j.jmst.2019.01.016
Orginal Article Current Issue | Archive | Adv Search |
Joint formation mechanism of high depth-to-width ratio friction stir welding
Yongxian Huang*(), Yuming Xie, Xiangchen Meng, Junchen Li, Li Zhou*()
State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
Download:  HTML  PDF(5512KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High depth-to-width ratio friction stir welding is an attractive method for the joining demands of aluminum profiles, which is sparked with its extremely low heat input and high mechanical performance. In this study, the joint formation mechanism was studied by a numerical model of plastic flow combined with experimental approaches. A fluid-solid-interaction algorithm was proposed to establish the coupling model, and the material to be welded was treated as non-Newtonian fluid. The thread structure and the milling facets on tool pin promoted drastic turbulence of material. The thread structure converged the plasticized material by its inclined plane, and then drove the attached material to refill the welds. The milling facets brought about the periodic dynamic material flow. The thread structure and the milling facets increased the strain rate greatly under the extremely low heat input, which avoided the welding defects. The condition of the peak temperature of 648 K and the strain rate of 151 s-1 attributed to the lowest coarsening degree of precipitate. The tensile strength of the joint reached 265 MPa, equivalent to 86% of base material. The amelioration via the material flow model inhibits the welding defects and optimizes the parameter intervals, providing references to extracting process-structure-property linkages for friction stir welding.

Key words:  Friction stir welding      Joint formation      Material flow      Al-Mg-Si alloy      Microstructure      Mechanical properties     
Received:  07 May 2018     
Corresponding Authors:  Huang Yongxian,Zhou Li     E-mail:  yxhuang@hit.edu.cn;zhouli@hitwh.edu.cn
About author: 

1These authors contributed equally.

Cite this article: 

Yongxian Huang, Yuming Xie, Xiangchen Meng, Junchen Li, Li Zhou. Joint formation mechanism of high depth-to-width ratio friction stir welding. J. Mater. Sci. Technol., 2019, 35(7): 1261-1269.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2019.01.016     OR     https://www.jmst.org/EN/Y2019/V35/I7/1261

Fig. 1.  (a) Depth-to-width ratio data of welding tools (The green points and the green blocks were the depth-to-width ratio data in the published open literature) and (b) illustration of hollow aluminum profiles with a large thickness-to-width ratio.
Chemical composition (wt%) Mechanical properties
Mg Si Cu Fe Mn Zn Cr Ti Al Tensile strength (MPa) Elongation (%)
1.10 0.81 0.23 0.75 0.15 0.31 0.07 0.19 Bal. 310 15.6
Table 1  Chemical composition and mechanical properties of Al-Mg-Si alloy sheets.
Fig. 2.  Schematic diagram of high depth-to-width ratio FSW.
Fig. 3.  Schematic view of high depth-to-width ratio FSW numerical model including solid structure and fluid domain.
Density (kg/m3) Young’s modulus (GPa) Poisson’s ratio Specific heat [J/(kg K)] Thermal expansion coefficient (10-6 K-1) Thermal conductivity [W/(m K)]
7800 211 0.28 560 37 9.1
A (MPa) B (MPa) C m n T0 (K)
908.5 321.4 0.28 1.18 0.278 300
Table 2  Material properties of H13 high speed steel.
Fig. 4.  Characteristics of weld surface appearances by high depth-to-width ratio FSW (The pentagons were the trough thickness reduction points at different welding speeds).
Fig. 5.  Macrostructure and microstructures of the typical joint: (a) joint macrostructure; microstructures of (b) “B”, (c) “C”, (d) “D”, (e) “E” and (f) “F” in Fig. 5(a); (g) EBSD pattern at advancing side.
Fig. 6.  Distributions of equivalent strain rate, velocity and their comparison: (a) equivalent strain rate contour, (b) equivalent velocity contour and (c) comparison between simulation and experiment at advancing side.
Fig. 7.  (a) Distributions of the 200 sampling points at the red line, (b) curves of equivalent strain rate, (c) curves of equivalent velocity and (d) curves of peak temperature at different welding speeds.
Fig. 8.  (a) Illustration of plasticized material flow via high depth-to-width ratio FSW and (b) velocity distributions on three Cartesian axes.
Fig. 9.  Comparisons of defect distributions between experiments and simulations: (a) and (b) 30 mm/min; (c) and (d) 100 mm/min; (e) and (f) 300 mm/min; (g) and (h) 400 mm/min; (i) and (j) 600 mm/min.
Fig. 10.  Partly fracture surface morphologies of high depth-to-width ratio FSW: (a) 30 mm/min, (b) 300 mm/min, (c) 400 mm/min and (d) 600 mm/min.
Fig. 11.  XRD pattern showing precipitations on fracture surfaces.
Fig. 12.  Response surface of the average void diameter based on the temperature and the equivalent strain rate.
Fig. 13.  Tensile properties of the high depth-to-width ratio FSW joints at different welding speeds.
[1] G.K. Padhy, C.S. Wu, S. Gao, J. Mater. Sci. Technol. 34(2018) 1-38
[2] B.T. Gibson, D.H. Lammlein, T.J. Prater, W.R. Longhurst, C.D. Cox, M.C. Ballun, K.J. Dharmaraj, G.E. Cook, A.M. Strauss, J. Manuf. Process. 16(2014) 56-73
[3] F.F. Wang, W.Y. Li, J. Shen, Q. Wen, J.F. dos Santos, J.Mater. Sci. Technol. 34(2018) 135-139
[4] F.C. Liu, Y. Hovanski, M.P. Miles, C.D. Sorensen, T.W. Nelson, J. Mater. Sci. Technol. 34(2018) 39-57
[5] M. Thom?, G. Wagner, B. Stra?, B. Wolter, S. Benfer, W. Fürbeth, J. Mater. Sci. Technol. 34(2018) 163-172
[6] H.J. Liu, H. Fujii, M. Maeda, K. Nogi, J. Mater, Process. Technol. 142(2003) 692-696
[7] N. Martinez, N. Kumar, R.S. Mishra, K.J. Doherty, J. Mater. Sci. 53 (2018) 9273-9286
[8] Z. Xu, Z. Li, S. Ji, L. Zhang, J. Mater. Sci. Technol. 34(2018) 878-885
[9] S.B. Aziz, M.W. Dewan, D.J. Huggett, M.A. Wahab, A.M. Okeil, T.W. Liao, Acta Metall. Sin.—Engl. Lett. 29(2016) 869-883
[10] G. Chen, Q. Ma, S. Zhang, J. Wu, G. Zhang, Q. Shi, J. Mater. Sci. Technol. 34(2017) 128-134
[11] S.D. Ji, Y.Y. Jin, Y.M. Yue, S.S. Gao, Y.X. Huang, L. Wang, J. Mater. Sci. Technol. 29(2013) 955-960
[12] C.Y. Liu, B. Qu, P. Xue, Z.Y. Ma, K. Luo, M.Z. Ma, R.P. Liu, J. Mater. Sci. Technol. 34(2018) 112-118
[13] B.B. Wang, F.F. Chen, F. Liu, W.G. Wang, P. Xue, Z.Y. Ma, J. Mater. Sci. Technol. 33(2017) 1009-1014
[14] P.A. Colegrove, H.R. Shercliff, J. Mater, Process. Technol. 169(2005) 320-327
[15] E. Hoyos, D. López, H. Alvarez, Mater. Des. 111(2016) 321-330
[16] X. Liu, C. Wu, G.K. Padhy, Scr. Mater. 102(2015) 95-98
[17] T. Fagan, V. Lemiale, J. Nairn, Y. Ahuja, R. Ibrahim, Y. Estrin, J. Mater. Process. Technol. 231(2016) 422-430
[18] A. Tongne, C. Desrayaud, M. Jahazi, E. Feulvarch, J. Mater, Process. Technol. 239(2017) 284-296
[19] Z. Zhang, Q. Wu, M. Grujicic, Z.Y. Wan, J. Mater. Sci. 51(2016) 1882-1895
[20] A. Barbini, J. Carstensen, J.F. dos Santos, J.Mater. Sci. Technol. 34(2018) 119-127
[21] P. Niu, W. Li, Z. Zhang, X. Yang, J. Mater. Sci. Technol. 33(2017) 987-990
[22] J. Schneider, J. Cobb, J.S. Carpenter, N.A. Mara, J. Mater. Sci. Technol. 34(2018) 92-101
[23] Y. Huang, Y. Xie, X. Meng, Z. Lv, J. Cao, J. Mater. Process. Technol. 252(2018) 233-241
[24] H. Su, C.S. Wu, A. Pittner, M. Rethmeier, Energy 77 (2014) 720-731
[25] O.C. Zienkiewicz, I.C. Cormeau, Int. J. Num. Methods Eng. 8(1974) 821-845
[26] F. Hannard, S. Castin, E. Maire, R. Mokso, T. Pardoen, A. Simar, Acta Mater. 130(2017) 121-136
[27] R. Nandan, G.G. Roy, T.J. Lienert, T. Debroy, Acta Mater. 55(2007) 883-895
[28] A. Tongne, M. Jahazi, E. Feulvarch, C. Desrayaud, J. Mater, Process. Technol. 221(2015) 269-278
[29] L. Shi, C.S. Wu, S. Gao, G.K. Padhy, Scr. Mater. 119(2016) 21-26
[30] X.X. Zhang, B.L. Xiao, Z.Y. Ma, Metall. Mater. Trans. A 42 (2011) 3229-3239
[31] K. Zhao, Z. Liu, B. Xiao, Z. Ma, J. Mater. Sci. Technol. 33(2017) 1004-1008
[32] X. Sauvage, A. Dédé, A.C. Mu?oz, B. Huneau, Mater. Sci. Eng. A 491 (2008) 364-371
[33] A.K. Gupta, D.J. Lloyd, S.A. Court, Mater. Sci. Eng. A 301 (2001) 140-146
[34] A. Simar, Y. Bréchet, B. De Meester, A. Denquin, C. Gallais, T. Pardoen, Prog. Mater. Sci. 57(2012) 95-183
[35] Q. Chu, W.Y. Li, X.W. Yang, J.J. Shen, A. Vairis, W.Y. Feng, W.B. Wang, J. Mater. Sci. Technol. 34(2018) 1739-1746
[36] Q. Du, K. Tang, C.D. Marioara, S.J. Andersen, B. Holmedal, R. Holmestad, Acta Mater. 122(2017) 178-186
[1] C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates[J]. 材料科学与技术, 2020, 41(0): 105-116.
[2] Miao Cao, Qi Zhang, Ke Huang, Xinjian Wang, Botao Chang, Lei Cai. Microstructural evolution and deformation behavior of copper alloy during rheoforging process[J]. 材料科学与技术, 2020, 42(0): 17-27.
[3] Ze-Tian Liu, Bing-Yu Wang, Cheng Wang, Min Zha, Guo-Jun Liu, Zhi-Zheng Yang, Jin-Guo Wang, Jie-Hua Li, Hui-Yuan Wang. Microstructure and mechanical properties of Al-Mg-Si alloy fabricated by a short process based on sub-rapid solidification[J]. 材料科学与技术, 2020, 41(0): 178-186.
[4] Wei Xu, Xin Lu, Jingjing Tian, Chao Huang, Miao Chen, Yu Yan, Luning Wang, Xuanhui Qu, Cuie Wen. Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications[J]. 材料科学与技术, 2020, 41(0): 191-198.
[5] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
[6] Weijie Ren, Dejia Liu, Qing Liu, Renlong Xin. Influence of texture distribution in magnesium welds on their non-uniform mechanical behavior: A CPFEM study[J]. 材料科学与技术, 2020, 46(0): 168-176.
[7] Feng Zhong, Huajie Wu, Yunlei Jiao, Ruizhi Wu, Jinghuai Zhang, Legan Hou, Milin Zhang. Effect of Y and Ce on the microstructure, mechanical properties and anisotropy of as-rolled Mg-8Li-1Al alloy[J]. 材料科学与技术, 2020, 39(0): 124-134.
[8] Piao Gao, Wenpu Huang, Huihui Yang, Guanyi Jing, Qi Liu, Guoqing Wang, Zemin Wang, Xiaoyan Zeng. Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5Y alloy produced by selective laser melting[J]. 材料科学与技术, 2020, 39(0): 144-154.
[9] Fu-Zhi Dai, Haiming Zhang, Huimin Xiang, Yanchun Zhou. Theoretical investigation on the stability, mechanical and thermal properties of the newly discovered MAB phase Cr4AlB4[J]. 材料科学与技术, 2020, 39(0): 161-166.
[10] Xiaogang Li, Kejian Li, Shanlin Li, Yao Wu, Zhipeng Cai, Jiluan Pan. Microstructure and high temperature fracture toughness of NG-TIG welded Inconel 617B superalloy[J]. 材料科学与技术, 2020, 39(0): 173-182.
[11] Bin Hu, Xin Tu, Haiwen Luo, Xinping Mao. Effect of warm rolling process on microstructures and tensile properties of 10¬タノMn steel[J]. 材料科学与技术, 2020, 47(0): 131-141.
[12] Shanshan Chen, Bin Zhang, Bin Zhanggchun, Hao Lin, Hui Yang, Feng Zheng, Ming Chen, Ke Yang. Assessment of structure integrity, corrosion behavior and microstructure change of AZ31B stent in porcine coronary arteries[J]. 材料科学与技术, 2020, 39(0): 39-47.
[13] Pengfei Gao, Mingwang Fu, Mei Zhan, Zhenni Lei, Yanxi Li. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review[J]. 材料科学与技术, 2020, 39(0): 56-73.
[14] Honggang Dong, Yueqing Xia, Xinxing Xu, Gul Jabeen Naz, Xiaohu Hao, Peng Li, Jun Zhou, Chuang Dong. Performance of GH4169 brazed joint using a new designed nickel-based filler metal via cluster-plus-glue-atom model[J]. 材料科学与技术, 2020, 39(0): 89-98.
[15] Hao Yu, Wei Xu, Sybrand van der Zwaag. Microstructure and dislocation structure evolution during creep life of Ni-based single crystal superalloys[J]. 材料科学与技术, 2020, 45(0): 207-214.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.