Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 41 Issue (0): 105-116    DOI: 10.1016/j.jmst.2019.10.005
Research Article Current Issue | Archive | Adv Search |
Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates
C. Yangab, J.F. Zhanga, G.N. Maa, L.H. Wua, X.M. Zhangc, G.Z. Hec, P. Xuea*(), D.R. Nia*(), B.L. Xiaoa, K.S. Wangd, Z.Y. Maa
aShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
bSchool of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
cCRRC Changchun Railway Vehicles Co., Ltd., Changchun 130062, China
dSchool of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
Download:  HTML  PDF(6509KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In the present work, 80 mm thick 6082Al alloy plates were successfully double-side welded by friction stir welding (FSW). The relationship between the microstructures and mechanical properties was built for the double-side FSW butt joint with more attention paid to the local characteristic zones. It was shown that a phenomenon of microstructural inhomogeneity existed in the nugget zone (NZ) through the thickness direction. The grain size presented an obvious gradient distribution from the top to the bottom for each single-pass weld, and the microhardness values decreased from both surfaces to the middle of the NZ. The lowest hardness zone (LHZ) exhibited a “hyperbolical”-shaped distribution extending to the middle of the NZ. Similar tensile properties were obtained in the three sliced specimens of the FSW joint, and the joint coefficient reached about 70% which achieved the same level as the conventional FSW Al alloy joints. Finite element modeling proved that the “hyperbolical”-shaped heat affected zone (HAZ) was beneficial to resisting the strain concentration in the middle layer specimen which helped to increase the tensile strength. Based on the analysis of the hardness contour map, tensile property and microstructural evolution of the joints, an Isothermal Softening Layer (ISL) model was proposed and established, which may have a helpful guidance for the optimization on the FSW of ultra-thick Al alloy plates.

Key words:  Ultra-thick aluminum alloy plates      Double-side friction stir welding      Finite element model      Microstructural inhomogeneity      Mechanical properties     
Received:  26 June 2019     
Corresponding Authors:  Xue P.,Ni D.R.     E-mail:  pxue@imr.ac.cn;drni@imr.ac.cn

Cite this article: 

C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates. J. Mater. Sci. Technol., 2020, 41(0): 105-116.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2019.10.005     OR     https://www.jmst.org/EN/Y2020/V41/I0/105

Mg Si Zn Cu Fe Mn Cr Ti Al
0.90 0.89 0.017 0.045 0.19 0.60 0.042 0.021 Bal.
Table 1  Chemical composition of the 6082Al BM (wt%).
Fig. 1.  (a) Image of the welding tool, schematics of (b) sampling position and (c) sliced tensile specimen.
Fig. 2.  Cross-sectional macrostructure of the double-side FSW joint (AS: advancing side; RS: retreating side).
Fig. 3.  EBSD maps of different regions in NZ: (a) top region and (b) middle region in the second-pass NZ, (c) overlapped region, (d) middle region and (e) top region in the first-pass NZ.
Fig. 4.  Misorientation angle distribution in different regions in NZ corresponding to Fig. 3: (a) top region and (b) middle region in the second-pass NZ, (c) overlapped region, (d) middle region and (e) top region in the first-pass NZ.
Fig. 5.  Bright-field TEM micrographs of (a) BM, (b) top region and (c) middle region of the second-pass NZ, (d) overlapped regions. Fig. 5(b-d) is corresponding to rectangles I, II and III in Fig. 3.
Fig. 6.  Microhardness profiles of the joint: (a) testing position sketch; (b) hardness profile along centre line through thickness direction; (c) hardness profile on the cross-section in the second-pass weld; (d) hardness profile on the cross-section in the first-pass weld.
Fig. 7.  Hardness contour map of the cross-sectional double-side FSW joint.
Fig. 8.  Diagrammatic feature of the proposed Isothermal Softening Layer model.
Fig. 9.  (a) Tensile result histogram of the double-side FSW joint and BM; (b) optical micrographs showing the fracture position of the sliced tensile specimens.
Fig. 10.  FEM model of (a) the second-pass weld and (c) middle layer specimens. The maximum principal strain field after 1.25% strain tensile loading was performed on (b) the second-pass weld and (d) the middle layer specimens. (e) The modeled stress-strain curves of the second-pass weld and middle layer specimens.
Fig. 11.  (a) Metallographic image of the weld; (b) magnified metallographic image of the overlapped region; EBSD maps of (c) zone A, (d) zone B and (e) zone C in (b).
Fig. 12.  Bright-field TEM micrographs of (a) zone A, (b) zone B and (c) zone C in Fig. 11(b).
Fig. 13.  EDS spectrum under STEM mode of the precipitates in zone B.
Fig. 14.  (a) Sampling position of the small size tensile specimens; (b) engineering stress?strain curves of different zones.
[1] U.F.H.R. Suhuddin, S. Mironov, Y.S. Sato, H. Kokawa, Mater. Sci. Eng. A 527 (2010) 1962-1969.
[2] T. Kawasaki, T. Makino, K. Masai, H. Ohba, Y. Ina, M. Ezumi, JMSE Int. J. 47(2004) 502-511.
[3] L. Wan, Y. Huang, W. Guo, S. Lv, J. Feng, J. Mater. Sci. Technol. 30(2014) 1243-1250.
[4] T. Kvackaj, Aluminium Alloys: Theory and Applications, InTech Publication, 2011.
[5] Z.H. Zhang, S.Y. Dong, Y.J. Wang, B.S. Xu, J.X. Fang, P. He, Mater. Des. 84(2015) 173-177.
[6] F.Y. Shu, Y.M. Sun, H.Y. Zhao, X.G. Song, S.H. Sui, W.X. He, J. Mater. Res. 31(2016) 3948-3955.
[7] M.M. Amrei, H. Monajati, D. Thibault, Y. Verreman, L. Germain, P. Bocher, Mater. Charact. 111(2016) 128-136.
[8] R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R 50 (1-2) (2005) 1-78.
[9] R.S. Mishra, P.S. De, N. Kumar, Friction Stir Welding and Processing: Science and Engineering, Springer International Publishing, Switzerland, 2014, pp. 1-338.
[10] G. Cam, S. Mistikoglu, J. Mater. Eng. Perform. 23(2014) 1936-1953.
[11] P. Xue, B.B. Wang, X.H. An, D.R. Ni, B.L. Xiao, Z.Y. Ma, Scr. Mater. 166(2019) 10-14.
[12] L.H. Wu, X.B. Hu, X.X. Zhang, Y.Z. Li, Z.Y. Ma, X.L. Ma, B.L. Xiao, Acta Mater. 166(2019) 371-385.
[13] C.Y. Liu, B. Qu, P. Xue, Z.Y. Ma, K. Luo, M.Z. Ma, R.P. Liu, J. Mater. Sci. Technol. 34(2018) 112-118.
[14] P. Xue, B.L. Xiao, Z.Y. Ma, J. Mater. Sci. Technol. 29(2013) 1111-1115.
[15] G.K. Padhy, C.S. Wu, S. Gao, J. Mater. Sci. Technol. 34(2018) 1-38.
[16] H. Zhang, D. Wang, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, Z.Y. Ma, J. Mater. Sci. Technol. 34(2018) 2183-2188.
[17] L.H. Wu, K. Nagatsuka, K. Nakata, J. Mater. Sci. Technol. 34(2018) 1628-1637.
[18] W.F. Xu, Y.X. Luo, W. Zhang, M.W. Fu, J. Mater. Sci. Technol. 34(2018) 173-184.
[19] M. Imam, Y.F. Sun, H. Fujii, N. Ma, S. Tsutsumi, S. Ahmed, V. Chintapenta, H. Murakawa, Int. J. Adv. Manuf. Technol. 99(2018) 663-681.
[20] J.G. Perrett, J. Martin, P.L. Threadgil, M.M.Z. Ahmed, in: Proceedings of the 6th World Congress Al, 2000, pp. 13-17.
[21] M. Imam, Y. Sun, H. Fujii, Y. Aoki, M.A. Ninshu, S. Tsutsumi, H. Murakawa, in: Friction Stir Welding and Processing IX, 2017, pp. 119-124.
[22] T. Dursun, C. Soutis, Mater. Des. 56(2014) 862-871.
[23] N. Guo, Y.L. Fu, Y.Z. Wang, Q. Meng, Y.X. Zhu, Mater. Des. 113(2017) 273-283.
[24] Z. Zhang, B.L. Xiao, D. Wang, Z.Y. Ma, Metall. Mater. Trans. A 42 (2011) 1717-1726.
[25] X.H. Zeng, P. Xue, D. Wang, D.R. Ni, B.L. Xiao, Z.Y. Ma, Metall. Mater. Trans. A 49 (2018) 2673-2683.
[26] Z. Zhang, B.L. Xiao, Z.Y. Ma, Metall. Mater. Trans. A 44 (2013) 4081-4097.
[27] Y.S. Sato, F. Yamashita, Y. Sugiura, S. Hwan, C. Park, H. Kokawa, Scr. Mater. 50(2004) 365-369.
[28] Y. Tao, Z. Zhang, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 612 (2014) 236-245.
[29] M.M.Z. Ahmed, B.P. Wynne, W.M. Rainforth, Adrian Addison, J.P. Martin, P.L. Threadgill, Metall. Mater. Trans. A 50 (2019) 271-284.
[30] K. Huang, R.E. Logé, Mater. Des. 111(2016) 548-574.
[31] X.H. Zeng, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma, J. Mater. Sci. Technol. 35(2019) 972-981.
[32] Z.Y. Ma, A.H. Feng, D.L. Chen, Crit. Rev. Solid State Mater.Sci. 43(2018) 269-333.
[33] K. Huang, R.E. Logé, Mater. Des. 111(2016) 548-574.
[34] N. Maruyama, R. Uemori, N. Hashimoto, M. Saga, M. Kikuchi, Scr. Mater. 36(1997) 89-93.
[35] Y.S. Sato, H. Kokawa, M. Enomoto, S. Jogan, Metall. Mater. Trans. A 30 (1999) 2429-2437.
[36] Y.S. Sato, H. Kokawa, M. Enomoto, S. Jogan, T. Hashimato, Metall. Mater. Trans. A 30 (1999) 3125-3130.
[37] F.C. Liu, Z.Y. Ma, Metall. Mater. Trans. A 39 (2008) 2378-2388.
[38] C. Yang, D.R. Ni, P. Xue, B.L. Xiao, W. Wang, K.S. Wang, Z.Y. Ma, Mater. Charact. 145(2018) 20-28.
[39] M. Werinos, H. Antrekowitsch, T. Ebner, R. Prillhofer, W.A. Curtin, P.J. Uggowitzer, S. Pogatscher, Acta Mater. 118(2016) 296-305.
[40] N. Martinez, N. Kumar, R.S. Mishra, K.J. Doherty, J. Alloys Compd. 713(2017) 51-63.
[41] X.Q. Liu, H.J. Liu, T.H. Wang, X.G. Wang, S. Yang, J. Mater. Sci. Technol. 34(2018) 102-111.
[42] X.X. Zhang, B.L. Xiao, Z.Y. Ma, Metall. Mater. Trans. A 42 (2011) 3218-3228.
[43] S.R. Ren, Z.Y. Ma, L.Q. Chen, Scr. Mater. 56(2007) 69-72.
[44] S. Malopheyev, I. Vysotskiy, V. Kulitskiy, S. Mironov, R. Kaibyshev, Mater. Sci. Eng. A 662 (2016) 136-143.
[45] R. Vissers, M.A. van Huis, J. Jansen, H.W. Zandbergen, C.D. Marioara, S.J. Andersen, Acta Mater. 55(2007) 3815-3823.
[46] L.P. Ding, Z.H. Jia, Z.Q. Zhang, R.E. Sanders, Q. Liu, G. Yang, Mater. Sci. Eng. A 627 (2015) 119-126.
[47] H.L. Chen, Q. Chen, Y. Du, J. Bratberg, A. Engströ, Trans. Nonferrous Met. Soc. China 24 (2014) 2041-2053.
[48] X.H. Zeng, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 755 (2019) 28-36.
[49] A. Tongne, M. Jahazi, E. Feulvarch, C. Desrayaud, J. Mater. Process Technol. 221(2015) 269-278.
[1] Praveen Sreeramagiri, Ajay Bhagavatam, Abhishek Ramakrishnan, Husam Alrehaili, Guru Prasad Dinda. Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing[J]. 材料科学与技术, 2020, 47(0): 20-28.
[2] Feng Zhong, Huajie Wu, Yunlei Jiao, Ruizhi Wu, Jinghuai Zhang, Legan Hou, Milin Zhang. Effect of Y and Ce on the microstructure, mechanical properties and anisotropy of as-rolled Mg-8Li-1Al alloy[J]. 材料科学与技术, 2020, 39(0): 124-134.
[3] Fu-Zhi Dai, Haiming Zhang, Huimin Xiang, Yanchun Zhou. Theoretical investigation on the stability, mechanical and thermal properties of the newly discovered MAB phase Cr4AlB4[J]. 材料科学与技术, 2020, 39(0): 161-166.
[4] Bin Hu, Xin Tu, Haiwen Luo, Xinping Mao. Effect of warm rolling process on microstructures and tensile properties of 10¬タノMn steel[J]. 材料科学与技术, 2020, 47(0): 131-141.
[5] Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. 材料科学与技术, 2020, 42(0): 122-129.
[6] Miao Cao, Qi Zhang, Ke Huang, Xinjian Wang, Botao Chang, Lei Cai. Microstructural evolution and deformation behavior of copper alloy during rheoforging process[J]. 材料科学与技术, 2020, 42(0): 17-27.
[7] Ze-Tian Liu, Bing-Yu Wang, Cheng Wang, Min Zha, Guo-Jun Liu, Zhi-Zheng Yang, Jin-Guo Wang, Jie-Hua Li, Hui-Yuan Wang. Microstructure and mechanical properties of Al-Mg-Si alloy fabricated by a short process based on sub-rapid solidification[J]. 材料科学与技术, 2020, 41(0): 178-186.
[8] Shucai Zhang, Huabing Li, Zhouhua Jiang, Zhixing Li, Jingxi Wu, Binbin Zhang, Fei Duan, Hao Feng, Hongchun Zhu. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654[J]. 材料科学与技术, 2020, 42(0): 143-155.
[9] Qi Wang, Wen Shi, Bo Zhu, Dang Sheng Su. An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin[J]. 材料科学与技术, 2020, 40(0): 24-30.
[10] Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J]. 材料科学与技术, 2020, 40(0): 88-98.
[11] Qian Yan, Bo Song, Yusheng Shi. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting[J]. 材料科学与技术, 2020, 41(0): 199-208.
[12] Enze Zhou, Dongxu Qiao, Yi Yang, Dake Xu, Yiping Lu, Jianjun Wang, Jessica A. Smith, Huabing Li, Hongliang Zhao, Peter K. Liaw, Fuhui Wang. A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms[J]. 材料科学与技术, 2020, 46(0): 201-210.
[13] H.F. Li, Z.Z. Shi, L.N. Wang. Opportunities and challenges of biodegradable Zn-based alloys[J]. 材料科学与技术, 2020, 46(0): 136-138.
[14] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
[15] Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential[J]. 材料科学与技术, 2020, 43(0): 168-174.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.