J. Mater. Sci. Technol. ›› 2022, Vol. 99: 28-38.DOI: 10.1016/j.jmst.2021.04.075
• Research article • Previous Articles Next Articles
Taiqian Moa, Zejun Chena,*(), Dayu Zhoua, Guangming Lua, Yongmeng Huanga, Qing Liub
Received:
2021-03-15
Revised:
2021-04-14
Accepted:
2021-04-24
Published:
2022-02-10
Online:
2022-02-09
Contact:
Zejun Chen
About author:
* E-mail address: zjchen@cqu.edu.cn (Z. Chen).Taiqian Mo, Zejun Chen, Dayu Zhou, Guangming Lu, Yongmeng Huang, Qing Liu. Effect of lamellar structural parameters on the bending fracture behavior of AA1100/AA7075 laminated metal composites[J]. J. Mater. Sci. Technol., 2022, 99: 28-38.
Fig. 1. SEM micrographs of 5-layer AA1100/AA7075 LMCs with different thickness ratios: (a) AA1100/AA7075 (1:4) and (b) AA1100/AA7075 (3:4). (c) and (d) present the corresponding microstructure and ODF maps of the constituent layers in (b).
Fig. 2. (a) Engineering stress-strain curves of 5-layer AA1100/AA7075 LMCs with different thickness ratios. (b) and (c) are the corresponding fracture side and strain distribution of the two specimens.
Fig. 3. (a) Specimens with different thickness ratios used in the bending test. (b) Bending stress-strain curves of specimens with different thickness ratios. (c) and (d) are bending models with a pre-notch and effective stress distributions in the two specimens, respectively.
Fig. 5. Strain distribution of 5-layer AA1100/AA7075 LMCs with different thickness ratios at various displacements: (a, b) AA1100/AA7075 (3:4) and (c, d) AA1100/AA7075 (1:4).
Fig. 6. Bending specimen (a, i) and fracture morphologies in 5-layer AA1100/AA7075 LMCs with different thickness ratios after the bending test: fracture sides (b-d) and fracture surfaces (e-h) of AA1100/AA7075 (3:4); fracture sides (j-l) and fracture surfaces (o-p) of AA1100/AA7075 (1:4).
Fig. 8. (a) Interfacial evolution of multilayered AA1100/AA7075 composites during roll bonding. (b) 320-layer sheet and (e) enlarged morphology; (c) 640-layer sheet and (f) enlarged morphology; and (d) 1280-layer sheet and (g) enlarged morphology.
Fig. 9. (a) Bending properties of AA1100/AA7075 LMCs with different numbers of layers. (b) Schematic diagram showing the E&P stage and C stage in the 1280-layer specimen. (c) Summary of the bending stress and absorbed energy.
Fig. 11. Bending specimen (a), fracture sides (b-f) and fracture surfaces (g, h) in 620-layer AA1100/AA7075 LMCs after the bending test. Bending specimen (i), fracture sides (j-m) and fracture surfaces (n, o) in 1280-layer AA1100/AA7075 LMCs after the bending test.
[1] |
Y. Wang, H. Wu, X. Liu, Y. Jiao, J. Sun, R. Wu, L. Hou, J. Zhang, X. Li, M. Zhang, Mater. Sci. Eng. A 761 (2019) 138049.
DOI URL |
[2] |
S. Jiang, R.L. Peng, N. Jia, X. Zhao, L. Zuo, J. Mater. Sci. Technol. 35 (2019) 1165-1174.
DOI URL |
[3] | H. Wu, T. Wang, R. Wu, L. Hou, J. Zhang, X. Li, M. Zhang, J. Mater. Sci. Technol. 254 (2018) 265-276. |
[4] |
J.Q. Duan, M.Z. Quadir, W. Xu, C. Kong, M. Ferry, Acta Mater. 123 (2017) 11-23.
DOI URL |
[5] |
L. Li, K. Nagai, F. Yin, Sci. Technol. Adv. Mater. 9 (2008) 023001.
DOI URL |
[6] |
B. Feng, Y. Xin, F. Guo, H. Yu, W. Yang, Q. Liu, Acta Mater 120 (2016) 379-390.
DOI URL |
[7] |
J. Tang, L. Chen, G. Zhao, C. Zhang, L. Sun, J. Magnes. Alloys 8 (2020) 654-666.
DOI URL |
[8] |
F. Findik, Mater. Des. 32 (2011) 1081-1093.
DOI URL |
[9] |
D.M. Fronczek, J. Wojewoda-Budka, R. Chulist, A. Sypien, A. Korneva, Z. Szulc, N. Schell, P. Zieba, Mater. Des. 91 (2016) 80-89.
DOI URL |
[10] |
C.M. Cepeda-Jimenez, M. Pozuelo, J.M. Garcia-Infanta, O.A. Ruano, F. Carreno, Mater. Sci. Eng. A 496 (2008) 133-142.
DOI URL |
[11] |
B.X. Liu, L.J. Huang, B. Wang, L. Geng, Mater. Sci. Eng. A 617 (2014) 115-120.
DOI URL |
[12] |
B. Yu, C. Geng, M. Zhou, H. Bai, Q. Fu, B. He, Compos. Part. B 92 (2016) 413-419.
DOI URL |
[13] |
Y. Li, B. Hu, B. Liu, A. Nie, Q. Li, Acta Mater 187 (2020) 51-65.
DOI URL |
[14] |
Q. Luo, H. Chen, W. Chen, C. Wang, Q. Li, Scr. Mater. 187 (2020) 413-417.
DOI URL |
[15] |
J. Xu, Y. Li, K. Ma, Y. Fu, Q. Li, Scr. Mater. 187 (2020) 142-147.
DOI URL |
[16] | Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, Mater. Sci. Technol. 65 (2020) 190-201. |
[17] |
S. Wang, L.J. Huang, Q. An, S. Jiang, H.X. Peng, Compos. Part. B 178 (2019) 107503.
DOI URL |
[18] |
T.M. Osman, J.J. Lewandowski, D.R. Lesuer, Mater. Sci. Eng. A 229 (1997) 1-9.
DOI URL |
[19] |
A. Rohatgi, D.J. Harach, K.S. Vecchio, K.P. Harvey, Acta Mater 51 (2003) 2933-2957.
DOI URL |
[20] |
X. Lv, M. Yue, W. Yang, X. Feng, X. Li, Y. Wang, J. Wang, J. Zhang, J. Wang, J. Mater. Sci. Technol. 67 (2021) 165-173.
DOI URL |
[21] | S. Wang, L. Huang, S. Jiang, R. Zhang, F. Sun, Q. An, L. Geng, Mater. Des. 197(2021). |
[22] |
B. Tekyeh-Marouf, R. Bagheri, R. Mahmudi, Mater. Lett. 58 (2004) 2721-2724.
DOI URL |
[23] |
B. Mahmudi, Compos. Part. A 39 (2008) 1685-1693.
DOI URL |
[24] |
X.L. Wu, Y.T. Zhu, Mater. Res. Lett. 5 (2017) 527-532.
DOI URL |
[25] |
T.Q. Mo, Z.J. Chen, H. Chen, C. Hu, W.J. He, Q. Liu, Mater. Sci. Eng. A 766 (2019) 138354.
DOI URL |
[26] |
Y.Y. Xiang, X.J. Wang, X.S. Hu, L.L. Meng, Z.X. Song, X.J. Li, Z.M. Sun, Q. Zhang, K. Wu, Compos. Part. A 119 (2019) 225-234.
DOI URL |
[27] |
T.Q. Mo, Z.J. Chen, Z.S. Zhou, J.J. Liu, W.J. He, Q. Liu, Mater. Sci. Eng. A 800 (2021) 140313.
DOI URL |
[28] | G.R. Johnson, W.H. Cook, Eng. Fract. Mech. 21 (1983) 541-548. |
[29] |
P. Jedrasiak, H. Shercliff, J. Mater. Sci. Technol. 76 (2020) 174-188.
DOI URL |
[30] |
J.M. Lee, B.R. Lee, S.B. Kang, Mater. Sci. Eng. A 406 (2005) 95-101.
DOI URL |
[31] |
L.F. Zeng, R. Gao, Q.F. Fang, X.P. Wang, Z.M. Xie, S. Miao, T. Hao, T. Zhang, Acta Mater 110 (2016) 341-351.
DOI URL |
[32] |
T.Q. Mo, Z.J. Chen, B.X. Li, H.T. Huang, W.J. He, Q. Liu, J. Alloys Compd. 805 (2019) 617-623.
DOI URL |
[33] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[34] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[35] |
Q. Luo, J. Li, B. Li, B. Liu, H. Shao, Q. Li, J. Magnes. Alloys 7 (2019) 58-71.
DOI URL |
[36] |
Q. Luo, C. Zhai, Q. Gu, W. Zhu, Q. Li, J. Alloys Compd. 814 (2019) 152297.
DOI URL |
[37] |
P. Hidalgo-Manrique, A. Orozco-Caballero, C.M. Cepeda-Jiménez, O.A. Ruano, F. Carreño, J. Mater. Sci. Technol. 32 (2016) 774-782.
DOI |
[38] |
M.Y. Seok, J.A. Lee, D.H. Lee, U. Ramamurty, S. Nambu, T. Koseki, J.I. Jang, Acta Mater 121 (2016) 164-172.
DOI URL |
[39] |
S. Nambu, J. Inoue, T. Koseki, Mater. Trans. 55 (2014) 227-237.
DOI URL |
[40] |
M.Z. Quadir, M. Ferry, O. Al-Buhamad, P.R. Munroe, Acta Mater. 57 (2009) 29-40.
DOI URL |
[41] |
M. Ma, P. Huo, W.C. Liu, G.J. Wang, D.M. Wang, Mater. Sci. Eng. A 636 (2015) 301-310.
DOI URL |
[42] |
R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, A. Bachmaier, Annu. Rev. Mater. Res. 40 (2010) 319-343.
DOI URL |
[1] | Young-Kyun Kim, Kee-Ahn Lee. Effect of carrier gas species on the microstructure and compressive deformation behaviors of ultra-strong pure copper manufactured by cold spray additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 97(0): 264-271. |
[2] | Haibo Zhang, Metin Örnek, Simanta Lahkar, Shuangxi Song, Xiaodong Wang, Richard A. Haber, Kolan Madhav Reddy. Enhanced densification and mechanical properties of β-boron by in-situ formed boron-rich oxide [J]. J. Mater. Sci. Technol., 2022, 99(0): 148-160. |
[3] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[4] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[5] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[6] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
[7] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[8] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[9] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[10] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[11] | Pengyu Wen, Bin Hu, Jiansheng Han, Haiwen Luo. A strong and ductile medium Mn steel manufactured via ultrafast heating process [J]. J. Mater. Sci. Technol., 2022, 97(0): 54-68. |
[12] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
[13] | Wenjun He, Lin Ye, Phil Coates, Fin Caton-Rose, Xiaowen Zhao. Reactive processing of poly(lactic acid)/poly(ethylene octene) blend film with tailored interfacial intermolecular entanglement and toughening mechanism [J]. J. Mater. Sci. Technol., 2022, 98(0): 186-196. |
[14] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[15] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||