J. Mater. Sci. Technol. ›› 2022, Vol. 97: 169-175.DOI: 10.1016/j.jmst.2021.05.013
• Research Article • Previous Articles Next Articles
Hongfeng Donga,b, Baozhong Lia, BoBo Liub, Yang Zhanga,*(), Lei Suna, Kun Luoa, Yingju Wua, Mengdong Maa,*(
), Bing Liua, Wentao Hua, Julong Hea, Dongli Yua, Bo Xua, Zhisheng Zhaoa,*(
), Yongjun Tiana
Received:
2021-03-19
Revised:
2021-05-06
Accepted:
2021-05-07
Published:
2021-07-01
Online:
2021-07-01
Contact:
Yang Zhang,Mengdong Ma,Zhisheng Zhao
About author:
zzhao@ysu.edu.cn (Z. Zhao).1 These authors contributed equally to this work.
Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic[J]. J. Mater. Sci. Technol., 2022, 97: 169-175.
Fig. 1. XRD patterns for nanopolycrystalline WC ceramics recovered from sintering WC nanopowder at 6 GPa and various temperatures, measured under ambient conditions by using Cu-Kα radiation with a wavelength λ of 1.5406 Å.
Fig. 4. Mechanical properties of nanocrystalline WC obtained at 6 GPa and various temperatures. (a) The room temperature Hv of binder-free nanocrystalline WC as a function of sintering temperature. (b) Vickers indentation of binder-free nanopolycrystalline WC sintered at 6 GPa and 1400 °C.
Fig. 5. Temperature dependence mechanical properties of nanopolycrystalline WC sintered at 6 GPa and 1400 °C. (a) Temperature dependence Hv for the binder-free nanopolycrystalline WC sample sintered at 6 GPa and 1400 °C. The literature data for SiC, Al2O3, TiC, WC-6Co, and WC-10Co alloys are also shown here for comparison [7,[24], [25], [26]]. The solid lines show the fitting curves according to Eq. (3). (b) and (d) are the Vickers indentation obtained at 1000 °C for binder-free nanopolycrystalline WC sintered at 6 GPa and 1400 °C and commercial cemented carbide YG10, respectively. (c) Comparison of the k and H0 coefficient in Eq. (3) for binder-free nanopolycrystalline WC obtained in the present work with those of traditional technical ceramics [25,26].
Fig. 6. Microstructure of nanopolycrystalline WC sintered at 6 GPa and 1400 °C. (a) STEM image of nanopolycrystalline WC sintered at 6 GPa and 1400 °C shows abundant defects in terms of dislocations and stacking faults. (b) SAED pattern of nanopolycrystalline WC sintered at 6 GPa and 1400 °C. (c) The grain size distribution of the sample sintered at 6 GPa and 1400 °C. (d) Enlarged STEM image showing the dislocation substructure in the 1400 °C sintered sample.
Fig. 7. Microstructure of the binder-free nanopolycrystalline WC was annealed at 1000 °C. (a) STEM image of the binder-free nanopolycrystalline WC subjected to 1000 °C annealing showing the microstructure evolution. The thermo-induced dislocation migration and annihilation are not obvious, and there are still many dislocations and stacking faults within grains. (b) The typical Σ2 grain boundary is seen in a WC bicrystal. The upper right inset is the SAED pattern of this grain, confirming the presence of the Σ2 boundary. (c) HRTEM image of the Σ2 boundary. The left side of (c) shows grain A viewed along [0001] direction, and the right side of (c) shows the grain B viewed along $\left[\bar{1}2\bar{1}0 \right]$ direction. Grains A and B are highly coherent, and some stacking faults exist near the Σ2 boundary.
Fig. 8. Microstructure of the binder-free nanopolycrystalline WC annealed at 1000 °C using t-EBSD. (a) The inverse pole figure and grain boundaries. The Σ2 boundaries are shown in red and the normal grain boundaries are shown in black. (b) The misorientation angle distribution for the 1000 °C annealed binder-free nanopolycrystalline WC.
[1] | Z.Z. Fang, M.C. Koopman, H. Wang, in: D. Mari, L. Llanes, V.K. Sarin (Eds.), Com-prehensive Hard Materials, Elsevier, Oxford, 2014, pp. 123-138. |
[2] |
Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang, H.Y. Sohn, Int. J. Refract. Hard Met. 27 (2009) 288-299.
DOI URL |
[3] |
J. García, V. Collado Ciprés, A. Blomqvist, B. Kaplan, Int. J. Refract. Hard Met. 80 (2019) 40-68.
DOI URL |
[4] |
J. Sun, J. Zhao, F. Gong, X. Ni, Z. Li, Crit. Rev. Solid State 44 (2019) 211-238.
DOI URL |
[5] |
L.E. Mccandlish, B.H. Kear, B.K. Kim, Nanostruct. Mater. 1 (1992) 119-124.
DOI URL |
[6] |
K. Jia, T.E. Fischer, B. Gallois, Nanostruct. Mater. 10 (1998) 875-891.
DOI URL |
[7] |
M. Lee, Metall. Trans. A 14 (1983) 1625-1629.
DOI URL |
[8] | Y.V. Milman, S. Chugunova, V. Goncharuck, S. Luyckx, I.T. Northrop, Int. J. Re-fract.Hard Met. 15 (1997) 97-101. |
[9] |
Y.V. Milman, S. Luyckx, I.T. Northrop, Int. J. Refract. Hard Met. 17 (1999) 39-44.
DOI URL |
[10] |
S.I. Cha, S.H. Hong, Mat. Sci. Eng. A 356 (2003) 381-389.
DOI URL |
[11] |
H.C. Kim, I.J. Shon, J.E. Garay, Z.A. Munir, Int. J. Refract. Hard Met. 22 (2004) 257-264.
DOI URL |
[12] |
B. Huang, L.D. Chen, S.Q. Bai, Scr. Mater. 54 (2006) 441-445.
DOI URL |
[13] |
S.G. Huang, K. Vanmeensel, O. Van Der Biest, J. Vleugels, Int. J. Refract. Hard Met. 26 (2008) 41-47.
DOI URL |
[14] |
S.K. Sun, G.J. Zhang, W.W. Wu, J.X. Liu, J. Zou, T. Suzuki, Y. Sakka, Int. J. Refract. Hard Met. 43 (2014) 42-45.
DOI URL |
[15] |
S.K. Li, J.Q. Li, Y. Li, F.S. Liu, W.Q. Ao, Mater. Sci. Tech-Lond. 31 (2015) 1749-1756.
DOI URL |
[16] |
J. Zhang, G. Zhang, S. Zhao, X. Song, J. Alloy Compd. 479 (2009) 427-431.
DOI URL |
[17] |
S. Grasso, J. Poetschke, V. Richter, G. Maizza, Y. Sakka, M.J. Reece, J. Am. Ceram. Soc. 96 (2013) 1702-1705.
DOI URL |
[18] |
D. Ma, Z. Kou, Y. Liu, Y. Wang, S. Gao, X. Luo, W. Li, Y. Wang, Y. Du, L. Lei, Int. J. Refract. Hard Met. 54 (2016) 427-432.
DOI URL |
[19] |
Y. Zhang, Z. Kou, Z. Wang, M. Yang, J. Lu, H. Liang, S. Guan, Q. Hu, H. Gong, D. He, Ceram. Int. 45 (2019) 8721-8726.
DOI URL |
[20] |
M. Hu, S. Zhang, B. Liu, Y. Wu, K. Luo, Z. Li, M. Ma, D. Yu, L. Liu, Y. Gao, Z. Zhao, Y. Kono, L. Bai, G. Shen, W. Hu, Y. Zhang, R. Riedel, B. Xu, J. He, Y. Tian, J. Materiomics 7 (2021) 177-184.
DOI URL |
[21] |
G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, J. Am. Ceram. Soc. 64 (1981) 533-538.
DOI URL |
[22] |
K. Kornaus, M. R ˛aczka, A. Gubernat, D. Zientara, J. Eur. Ceram. Soc. 37 (2017) 4567-4576.
DOI URL |
[23] |
A. Gubernat, P. Rutkowski, G. Grabowski, D. Zientara, Int. J. Refract. Hard Met. 43 (2014) 193-199.
DOI URL |
[24] |
J. Lankford, J. Mater. Sci. 18 (1983) 1666-1674.
DOI URL |
[25] |
H.L. Wang, M.H. Hon, Ceram. Int. 25 (1999) 267-271.
DOI URL |
[26] |
J.M. Wheeler, J. Michler, Rev. Sci. Instrum. 84 (2013) 101301.
DOI PMID |
[27] |
B.M. Kramer, P.K. Judd, J. Vac. Sci. Technol. 3 (1985) 2439-2444.
DOI URL |
[28] |
N. Nishiyama, T. Taniguchi, H. Ohfuji, K. Yoshida, F. Wakai, B.N. Kim, H. Yoshida, Y. Higo, A. Holzheid, O. Beermann, T. Irifune, Y. Sakka, K.I. Funakoshi, Scr. Mater. 69 (2013) 362-365.
DOI URL |
[29] |
S.C. Liao, Y.J. Chen, W.E. Mayo, B.H. Kear, Nanostruct. Mater. 11 (1999) 553-557.
DOI URL |
[30] |
B.H. Kear, J. Colaizzi, W.E. Mayo, S.C. Liao, Scr. Mater. 44 (2001) 2065-2068.
DOI URL |
[31] | J.J. Jonas, M.J. Luton, in: J.J. Burke, V. Weiss (Eds.), Advances in Deformation Processing, Springer, Boston, MA, 1978, pp. 215-243. |
[32] |
M. Pellan, S. Lay, J.M. Missiaen, S. Norgren, J. Angseryd, E. Coronel, T. Persson, Acta Mater. 155 (2018) 372-378.
DOI URL |
[33] |
S. Hagége, G. Nouet, P. Delavignette, Phys. Status Solidi 62 (1980) 97-107.
DOI URL |
[34] |
K. Mannesson, M. Elfwing, A. Kusoffsky, S. Norgren, J. Ågren, Int. J. Refract. Hard Met. 26 (2008) 449-455.
DOI URL |
[35] | S. Zhao, X. Song, X. Liu, C. Wei, H. Wang, Y. Gao, Acta Metall. Sin. 47 (2011) 1188-1194. |
[36] |
X. Liu, X. Song, C. Wei, Y. Gao, H. Wang, Scr. Mater. 66 (2012) 825-828.
DOI URL |
[37] |
F.Z. Dai, H. Xiang, Y. Zhou, J. Am. Ceram. Soc. 103 (2020) 3311-3320.
DOI URL |
[38] |
M. Detrois, J. Mccarley, S. Antonov, R.C. Helmink, R.L. Goetz, S. Tin, Mater. High Temp. 33 (2016) 310-317.
DOI URL |
[39] |
H. Yoshida, K. Yokoyama, N. Shibata, Y. Ikuhara, T. Sakuma, Acta Mater. 52 (2004) 2349-2357.
DOI URL |
[40] | G. Gupta, G.S. Was, in: T. Allen, R. Lott, J. Busby, A. Kumar (Eds.), Effects of Radiation on Materials: 22nd Symposium, ASTM International, West Con-shohocken, PA, 2006, pp. 98-2006. |
[41] |
G. Östberg, M.U. Farooq, M. Christensen, H.O. Andrén, U. Klement, G. Wahn-ström, Mat. Sci. Eng. A 416 (2006) 119-125.
DOI URL |
[42] |
X. Liu, X. Liu, H. Lu, H. Wang, C. Hou, X. Song, Z. Nie, Acta Mater. 175 (2019) 171-181.
DOI URL |
[43] |
M.R. Elizalde, I. Ocaña, J. Alkorta, J.M. Sánchez-Moreno, Int. J. Refract. Hard Met. 72 (2018) 39-44.
DOI URL |
[44] |
S. Lay, J. Vicens, F. Osterstock, J. Mater. Sci. 22 (1987) 1310-1322.
DOI URL |
[1] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[2] | Luqing Cui, Cheng-Han Yu, Shuang Jiang, Xiaoyu Sun, Ru Lin Peng, Jan-Erik Lundgren, Johan Moverare. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X [J]. J. Mater. Sci. Technol., 2022, 96(0): 295-307. |
[3] | Huan Zhang, Yangxin Li, Yuxuan Liu, Qingchun Zhu, Xixi Qi, Gaoming Zhu, Jinhui Wang, Peipeng Jin, Xiaoqin Zeng. The effect of basal <a> dislocation on $\left\{ 11\bar{2}1 \right\}$ twin boundary evolution in a Mg-Gd-Y-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 81(0): 212-218. |
[4] | Chaoqun Dang, Weitong Lin, Fanling Meng, Hongti Zhang, Sufeng Fan, Xiaocui Li, Ke Cao, Haokun Yang, Wenzhao Zhou, Zhengjie Fan, Ji-jung Kai, Yang Lu. Enhanced tensile ductility of tungsten microwires via high-density dislocations and reduced grain boundaries [J]. J. Mater. Sci. Technol., 2021, 95(0): 193-202. |
[5] | Wei Song, Xinguang Wang, Jinguo Li, Jie Meng, Yanhong Yang, Jinlai Liu, Jide Liu, Yizhou Zhou, Xiaofeng Sun. Influence of Ta/Al ratio on the microstructure and creep property of a Ru-containing Ni-based single-crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 89(0): 16-23. |
[6] | Z. Zhen, H. Wang, C.Y. Teng, C.G. Bai, D.S. Xu, R. Yang. Dislocation self-interaction in TiAl: Evolution of super-dislocation dipoles revealed by atomistic simulations [J]. J. Mater. Sci. Technol., 2021, 69(0): 138-147. |
[7] | Jiayi Zhang, Yan Jin Lee, Hao Wang. Microstructure evaluation of shear bands of microcutting chips in AA6061 alloy under the mechanochemical effect [J]. J. Mater. Sci. Technol., 2021, 91(0): 178-186. |
[8] | Zhonghuai Wu, Liangchi Zhang. Mechanical properties and deformation mechanisms of surface-modified 6H-silicon carbide [J]. J. Mater. Sci. Technol., 2021, 90(0): 58-65. |
[9] | Shuang Zhang, Fei Wang, Ping Huang. Enhanced Hall-Petch strengthening in graphene/Cu nanocomposites [J]. J. Mater. Sci. Technol., 2021, 87(0): 176-183. |
[10] | Lili Xiao, Ping Huang, Fei Wang. Inverse grain-size-dependent strain rate sensitivity of face-centered cubic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 86(0): 251-259. |
[11] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
[12] | Lulu Li, Irene J. Beyerlein, Weizhong Han. Interface-facilitated stable plasticity in ultra-fine layered FeAl/FeAl2 micro-pillar at high temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 61-65. |
[13] | Jin-Yu Zhang, Fu-Zhi Dai, Zhi-Peng Sun, Wen-Zheng Zhang. Structures and energetics of semicoherent interfaces of precipitates in hcp/bcc systems: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2021, 67(0): 50-60. |
[14] | Shixing Huang, Qinyang Zhao, Yongqing Zhao, Cheng Lin, Cong Wu, Weiju Jia, Chengliang Mao, Vincent Ji. Toughening effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys [J]. J. Mater. Sci. Technol., 2021, 79(0): 147-164. |
[15] | Qing Han, Yipeng Li, Guang Ran, Xinyi Liu, Lu Wu, Yang Chen, Piheng Chen, Xiaoqiu Ye, Yifan Ding, Xiaoyong Wu. In-situ TEM observation of the evolution of helium bubbles & dislocation loops and their interaction in Pd during He + irradiation [J]. J. Mater. Sci. Technol., 2021, 87(0): 108-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||