J. Mater. Sci. Technol. ›› 2022, Vol. 96: 295-307.DOI: 10.1016/j.jmst.2021.05.005
• Research Article • Previous Articles Next Articles
Luqing Cuia, Cheng-Han Yua, Shuang Jianga, Xiaoyu Suna, Ru Lin Penga, Jan-Erik Lundgrenb, Johan Moverarea,*()
Received:
2021-01-29
Revised:
2021-05-17
Accepted:
2021-05-19
Published:
2022-01-10
Online:
2022-01-05
Contact:
Johan Moverare
About author:
*E-mail address: johan.moverare@liu.se (J. Moverare).Luqing Cui, Cheng-Han Yu, Shuang Jiang, Xiaoyu Sun, Ru Lin Peng, Jan-Erik Lundgren, Johan Moverare. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X[J]. J. Mater. Sci. Technol., 2022, 96: 295-307.
Fig. 1. (a) Schematic illustration showing the variation of crystal orientations caused by the presence of GNDs in EBSD-acquired orientation maps. The GND density was calculated from the measurements within the high angle grain boundaries (HAGBs). Moreover, a misorientation angle of 15° was used as the criterion between HAGBs and low angle grain boundaries (LAGBs). Note that because the SSD type dislocations have a net-zero Burger vector, the existence of SSDs has no effect on the lattice curvature. (b) The schematic 3D view of the lattice curvature calculated between points 1 and 2 in Fig. 1(a) with the common axis of [uvw]c and a misorientation angle of ∆θ.
Dislocation type | Burgers vector $\vec{b}$ | Line vector $\vec{l}$ |
---|---|---|
$\vec{b}$ ⊥$\vec{l}$ | a/2[$0\bar{1}1$] | [$\bar{2}11$] |
$\vec{b}$ ⊥$\vec{l}$ | a/2[$0\bar{1}1$] | [ |
$\vec{b}$ ⊥⊥ | a/2[ | [$\bar{12}1$] |
$\vec{b}$ ⊥$\vec{l}$ | a/2[ | [$1\bar{21}$] |
$\vec{b}$ ⊥$\vec{l}$ | a/2[011] | [$2\bar{1}1$] |
$\vec{b}$ ⊥$\vec{l}$ | a/2[011] | [$21\bar{1}$] |
$\vec{b}$ ⊥$\vec{l}$ | a/2[$\bar{1}01$] | [$\bar{1}2\bar{1}$] |
$\vec{b}$ ⊥$\vec{l}$ | a/2[$\bar{1}01$] | [ |
$\vec{b}$ ⊥$\vec{l}$ | a/2[ | [1$\bar{1}2$] |
$\vec{b}$ ⊥$\vec{l}$ | a/2[ | [11$\bar{2}$] |
$\vec{b}$ ⊥$\vec{l}$ | a/2[$1\bar{1}0$] | [11$\bar{2}$] |
$\vec{b}$ ⊥$\vec{l}$ | a/2[$1\bar{1}0$] | [$\bar{112}$] |
$\vec{b}$ ∥$\vec{l}$ | a/2[$0\bar{1}1$] | [$0\bar{1}1$] |
$\vec{b}$ ∥$\vec{l}$ | a/2[ | [ |
$\vec{b}$ ∥$\vec{l}$ | a/2[011] | [011] |
$\vec{b}$ ∥$\vec{l}$ | a/2[$\bar{1}01$] | [$\bar{1}01$] |
$\vec{b}$ ∥$\vec{l}$ | a/2[ | [ |
$\vec{b}$ ∥$\vec{l}$ | a/2[$1\bar{1}0$] | [$1\bar{1}0$] |
Table 1 Detailed information of the resultant 18 GND dislocation types, including 12 edges with Burgers vector perpendicular to the line vector $\vec{b}$⊥$\vec{l}$, and 6 screw dislocation configurations with Burgers vector parallel to the line vector $\vec{b}$∥$\vec{l}$.
Dislocation type | Burgers vector $\vec{b}$ | Line vector $\vec{l}$ |
---|---|---|
$\vec{b}$ ⊥$\vec{l}$ | a/2[$0\bar{1}1$] | [$\bar{2}11$] |
$\vec{b}$ ⊥$\vec{l}$ | a/2[$0\bar{1}1$] | [ |
$\vec{b}$ ⊥⊥ | a/2[ | [$\bar{12}1$] |
$\vec{b}$ ⊥$\vec{l}$ | a/2[ | [$1\bar{21}$] |
$\vec{b}$ ⊥$\vec{l}$ | a/2[011] | [$2\bar{1}1$] |
$\vec{b}$ ⊥$\vec{l}$ | a/2[011] | [$21\bar{1}$] |
$\vec{b}$ ⊥$\vec{l}$ | a/2[$\bar{1}01$] | [$\bar{1}2\bar{1}$] |
$\vec{b}$ ⊥$\vec{l}$ | a/2[$\bar{1}01$] | [ |
$\vec{b}$ ⊥$\vec{l}$ | a/2[ | [1$\bar{1}2$] |
$\vec{b}$ ⊥$\vec{l}$ | a/2[ | [11$\bar{2}$] |
$\vec{b}$ ⊥$\vec{l}$ | a/2[$1\bar{1}0$] | [11$\bar{2}$] |
$\vec{b}$ ⊥$\vec{l}$ | a/2[$1\bar{1}0$] | [$\bar{112}$] |
$\vec{b}$ ∥$\vec{l}$ | a/2[$0\bar{1}1$] | [$0\bar{1}1$] |
$\vec{b}$ ∥$\vec{l}$ | a/2[ | [ |
$\vec{b}$ ∥$\vec{l}$ | a/2[011] | [011] |
$\vec{b}$ ∥$\vec{l}$ | a/2[$\bar{1}01$] | [$\bar{1}01$] |
$\vec{b}$ ∥$\vec{l}$ | a/2[ | [ |
$\vec{b}$ ∥$\vec{l}$ | a/2[$1\bar{1}0$] | [$1\bar{1}0$] |
$\bar{C}${200} | $\bar{C}${220} | $\bar{C}${311} | $\bar{C}${222} | $\bar{C}${420} | $\bar{C}${422} | q | |
---|---|---|---|---|---|---|---|
0.09877 | 0.30175 | 0.14952 | 0.20613 | 0.09877 | 0.20432 | 0.14952 | 2.01801 |
Table 2 The calculated values of $\bar{C}$ and q by assuming equal proportions of edge and screw dislocations in the as-built HX alloy.
$\bar{C}${200} | $\bar{C}${220} | $\bar{C}${311} | $\bar{C}${222} | $\bar{C}${420} | $\bar{C}${422} | q | |
---|---|---|---|---|---|---|---|
0.09877 | 0.30175 | 0.14952 | 0.20613 | 0.09877 | 0.20432 | 0.14952 | 2.01801 |
Fig. 2. (a) Schematic illustration of scanning strategy applied in the present work. (b) Schematic 3D overview of the sample for microstructural characterization, hardness measurement and method for determination of GND and SSD densities. BD: building direction, WD: wall direction, TD: transverse direction.
C | Mn | Co | Cr | Mo | Si | Fe | Ni |
---|---|---|---|---|---|---|---|
0.09 | 0.9 | 1.03 | 21 | 9.2 | 0.88 | 18.8 | Bal. |
Table 3 The chemical composition of the EOS NickelAlloy HX powder (wt%).
C | Mn | Co | Cr | Mo | Si | Fe | Ni |
---|---|---|---|---|---|---|---|
0.09 | 0.9 | 1.03 | 21 | 9.2 | 0.88 | 18.8 | Bal. |
Fig. 3. Typical microstructures of the as-built HX alloy. (a?d) SEM micrographs showing the morphologies of semi-elliptical MPBs, highly serrated GBs, submicron cellular structures. (e) Bright-field STEM micrograph showing high density of tangled dislocations on the cellular boundaries and some nanoparticles with an average size of 65 nm precipitating nearby the boundaries. (f) and (g) Inverse pole figure (IPF) coloring maps acquired from X-Z and X-Y planes, respectively. (h) Distribution of grain size in X-Z and X-Y planes in Fig. 3(f) and (g), respectively. (i) and (j) Qualitative distribution of GND density in the dashed boxes in Fig. 3(f) and (g), respectively. (k) The (100), (110) and (111) pole figures from the same measuring region in Fig. 3(g). (l) Schematic showing the difference between large grains and the surrounding small grains from the aspects of GB density, GND density and grain orientation.
Fig. 4. (a) The schematic illustration of the slip trace (or trace of slip plane) on the sample surface. (b) Indentation of the maximum load of 0.1 kgf in the as-built HX alloy demonstrates that planar slip mode is apparent from the thin and straight slip traces on the sample surface. (c) EBSD IPF coloring map acquired from the same region in Fig. 4(b). (d) GND density map shows the effect of indent on the microstructure. (e) Enlarged region of the white box in Fig. 4(b) and (c) illustrates the occurrence of slip transfer. (f) The change of misorientation angle as a function of the distance from point A in Fig. 4(g). (g, h) Enlarged regions of white and red boxes in Fig. 4(b) and (c) show that two-line directions of slip steps present in the {001} orientated grains.
Fig. 5. (a, b) Hardness as a function of applied stress and indentation depth for the as-built L-PBF HX alloy and (c) corresponding N/G plot for the data in Fig. 5(a) and (b). (d) Relationship between indentation depth and corresponding GND density.
Hfric | HSS | HGB | HP-Cut | HP-Loop | ρSSD | ρGND(h) |
---|---|---|---|---|---|---|
0.463 | 0.932 | 0.452 | 0.060 | 0.054 | 3.364×1014 | 4.039×1014 |
Table 4 Estimated values of various hardness components (GPa) and the densities of GNDs and SSDs (m-2).
Hfric | HSS | HGB | HP-Cut | HP-Loop | ρSSD | ρGND(h) |
---|---|---|---|---|---|---|
0.463 | 0.932 | 0.452 | 0.060 | 0.054 | 3.364×1014 | 4.039×1014 |
Fig. 6. (a, b) Magnified EBSD-BC and GB distribution maps. (c) Frequency histograms of the total screw, total edge and total GND density distribution in the HX alloy. (d) The total screw, total edge and total GND density map, respectively. (e) Bright-field STEM micrograph of the as-built HX alloy, showing that dislocations with high density segregate at cellular walls. (f) Enlarged regions of the red box in Fig. 6(e). (g) A high-angle annular dark-field (HAADF) STEM image, showing dense dislocation tangled cell structures formed in the as-built microstructure. (h) Peak broadening of reflection 422 in the as-built HX alloy. Full width at half maximum (FHWM) is also indicated, and instrumental broadening has been removed. (i) Relationship between ∆K and $K{{\bar{C}}^{1/2}}$ by fitting Eq. (30). The slope of m-WH plot generally represents the magnitude of total dislocation density.
[1] | C. Zhu, T. Harrington, G.T. Gray, K.S. Vecchio, ActaMater. 155 (2018)104-116. |
[2] |
O. Muránsky, L. Balogh, M. Tran, C.J. Hamelin, J.S. Park, M.R. Daymond, Acta Mater. 175 (2019) 297-313.
DOI URL |
[3] |
M. Yang, J. Zhang, H. Wei, W. Gui, H. Su, T. Jin, L. Liu, Scr. Mater. 147 (2018) 16-20.
DOI URL |
[4] |
L. Cui, J. Yu, J. Liu, T. Jin, X. Sun, Mater. Sci. Eng. A 710 (2018) 309-317.
DOI URL |
[5] |
S. Birosca, G. Liu, R. Ding, J. Jiang, T. Simm, C. Deen, M. Whittaker, Int. J. Plast. 118 (2019) 252-268.
DOI URL |
[6] |
S.S.M. Tavares, M.R. da Silva, J.M. Pardal, H.F.G. Abreu, A.M. Gomes, J. Mater. Process. Technol. 180 (2006) 318-322.
DOI URL |
[7] |
W. Pantleon, Scr. Mater. 58 (2008) 994-997.
DOI URL |
[8] |
L. Cui, S. Jiang, J. Xu, R.L. Peng, R.T. Mousavian, J. Moverare, Mater. Des. 198 (2021) 109385.
DOI URL |
[9] |
W.D. Nix, H. Gao, J. Mech. Phys. Solids 46 (1998) 411-425.
DOI URL |
[10] |
K. Durst, B. Backes, O. Franke, M. Goken, Acta Mater. 54 (2006) 2547-2555.
DOI URL |
[11] |
K. Durst, O. Franke, A. Böhner, M. Göken, Acta Mater. 55 (2007) 6 825-6 833.
DOI URL |
[12] |
M. Shell De Guzman, G. Neubauer, P. Flinn, W.D. Nix, Mater. Res. Soc. Symp. Proc. 308 (1993) 613-618.
DOI URL |
[13] | N.A. Stelmashenko, M.G. Walls, L.M. Brown, Y.V. Milman, Springer Science & Business Media-Berlin, 1994. |
[14] |
S. Graça, R. Colaço, P.A. Carvalho, R. Vilar, Mater. Lett. 62 (2008) 3812-3814.
DOI URL |
[15] |
K. Durst, B. Backes, M. Göken, Scr. Mater. 52 (2005) 1093-1097.
DOI URL |
[16] |
L. Cui, J. Yu, J. Liu, X. Sun, J. Alloy. Compd. 746 (2018) 335-349.
DOI URL |
[17] |
L. Cui, J. Liu, R.L. Peng, J. Yu, J. Moverare, X. Sun, Mater. Charact. 163 (2020) 110241.
DOI URL |
[18] | Q. Han, Y. Gu, R. Setchi, F. Lacan, R. Johnston, S.L. Evans, S. Yang, Addit. Manuf. 30 (2019) 100919. |
[19] | D. Tabor, The Hardness of Metals, Oxford University Press, London, 1951. |
[20] |
A.A.H. Ameri, N.N. Elewa, M. Ashraf, J.P. Escobedo-Diaz, Mater. Charact. 131 (2017) 324-330.
DOI URL |
[21] | K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985. |
[22] | C.H. Yu, R.L. Peng, V. Luzin, M. Sprengel, M. Calmunger, J.E. Lundgren, H. Brodin, A. Kromm, J. Moverare, Addit. Manuf. 36 (2020) 101672. |
[23] |
H. Biermann, M. Strehler, H. Mughrabi, Metall. Mater. Trans. A 27 (1996) 1003-1014.
DOI URL |
[24] |
B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, M.X. Huang, Science 357 (2017) 1029-1032.
DOI URL PMID |
[25] |
Y.J. Yin, J.Q. Sun, J. Guo, X.F. Kan, D.C. Yang, Mater. Sci. Eng. A 744 (2019) 773-777.
DOI URL |
[26] |
H. Mughrabi, Mater. Sci. Eng. 85 (1987) 15-31.
DOI URL |
[27] |
P. Luo, D.T. McDonald, W. Xu, S. Palanisamy, M.S. Dargusch, K. Xia, Scr. Mater. 66 (2012) 785-788.
DOI URL |
[28] |
Y. Kamimura, K. Edagawa, S. Takeuchi, Acta Mater 61 (2013) 294-309.
DOI URL |
[29] |
H.A. Roth, C.L. Davis, R.C. Thomson, Metall. Mater. Trans. A 28 (1997) 1329-1335.
DOI URL |
[30] |
K.C. Russell, L.M. Brown, Acta Metall. 20 (1972) 969-974.
DOI URL |
[31] |
A. Deschamps, M. Militzer, W.J. Poole, ISIJ Int. 41 (2001) 196-205.
DOI URL |
[32] |
Y.M. Wang, T. Voisin, J.T. McKeown, J.C. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Nat. Mater. 17 (2018) 63-71.
DOI URL |
[33] |
G. Ribárik, J. Gubicza, T. Ungár, Mater. Sci. Eng. A 387-389 (2004) 343-347.
DOI URL |
[34] |
O.O. Salman, C. Gammer, A.K. Chaubey, J. Eckert, S. Scudino, Mater. Sci. Eng. A 748 (2019) 205-212.
DOI URL |
[35] |
Z.B. Jiao, J.H. Luan, Z.W. Zhang, M.K. Miller, W.B. Ma, C.T. Liu, Acta Mater. 61 (2013) 5996-6005.
DOI URL |
[36] |
H.J. Kong, C. Xu, C.C. Bu, C. Da, J.H. Luan, Z.B. Jiao, G. Chen, C.T. Liu, Acta Mater. 172 (2019) 150-160.
DOI URL |
[37] |
E.I. Galindo-Nava, L.D. Connor, C.M.F. Rae, Acta Mater. 98 (2015) 377-390.
DOI URL |
[38] |
C.R. Hutchinson, M. Gouné, A. Redjaïmia, Acta Mater. 55 (2007) 213-223.
DOI URL |
[39] |
A.J. Wilkinson, D. Randman, Philos. Mag. 90 (2010) 1159-1177.
DOI URL |
[40] |
B.S. El-Dasher, B.L. Adams, A.D. Rollett, Scr. Mater. 48 (2003) 141-145.
DOI URL |
[41] |
E. Demir, D. Raabe, N. Zaafarani, S. Zaefferer, Acta Mater. 57 (2009) 559-569.
DOI URL |
[42] |
S. Das, F. Hofmann, E. Tarleton, Int. J. Plast. 109 (2018) 18-42.
DOI URL |
[43] | M.F. Ashby, Philos. Mag. 21 (1970) 399-424. |
[44] |
M. Shamsujjoha, S.R. Agnew, J.M. Fitz-Gerald, W.R. Moore, T.A. Newman, Metall. Mater. Trans. A 49 (2018) 3011-3027.
DOI URL |
[45] |
T. Ungár, I. Dragomir, Á. Révész, A. Borbély, J. Appl. Crystallogr. 32 (1999) 992-1002.
DOI URL |
[46] |
F. Jiang, S. Takaki, T. Masumura, R. Uemori, H. Zhang, T. Tsuchiyama, Int. J. Plast. 129 (2020) 102700.
DOI URL |
[47] |
J. Pešička, R. Kužel, A. Dronhofer, G. Eggeler, Acta Mater. 51 (2003) 4847-4862.
DOI URL |
[48] |
H.A. Canistraro, E.H. Jordan, S. Shixiang, L.H. Favrow, F.A. Reed, J. Eng. Mater. Technol. 120 (1998) 242-247.
DOI URL |
[49] |
G. Csiszar, L. Balogh, A. Misra, X. Zhang, T. Ungar, J. Appl. Phys. 110 (2011) 043502.
DOI URL |
[50] | G. Csiszár, A. Misra, T. Ungár, Mater. Sci. Eng. A 528 (2011) 6887-6895. |
[51] |
G. Csiszár, K. Pantleon, H. Alimadadi, G. Ribárik, T. Ungár, J. Appl. Crystallogr. 45 (2012) 61-70.
DOI URL |
[52] |
A. Leicht, C.H. Yu, V. Luzin, U. Klement, E. Hryha, Mater. Charact. 163 (2020) 110309.
DOI URL |
[53] |
D. Wang, C. Song, Y. Yang, Y. Bai, Mater. Des. 100 (2016) 291-299.
DOI URL |
[54] |
M. Garibaldi, I. Ashcroft, M. Simonelli, R. Hague, Acta Mater. 110 (2016) 207-216.
DOI URL |
[55] |
T. Ishimoto, K. Hagihara, K. Hisamoto, S.-H. Sun, T. Nakano, Scr. Mater. 132 (2017) 34-38.
DOI URL |
[56] |
K.A. Nibur, D.F. Bahr, Scr. Mater. 49 (2003) 1055-1060.
DOI URL |
[57] |
Y. Yuan, Y. Gu, C. Cui, T. Osada, Z. Zhong, T. Tetsui, T. Yokokawa, H. Harada, J. Mater. Res. 26 (2011) 2833-2837.
DOI URL |
[58] |
S. Ma, L. Carroll, T.M. Pollock, Acta Mater. 55 (2007) 5802-5812.
DOI URL |
[59] |
M.A. Charpagne, P. vennÉguÈs, T. Billot, J.M. Franchet, N. Bozzolo, J. Microsc. 263 (2016) 106-112.
DOI URL |
[60] |
F. Diologent, P. Caron, Mater. Sci. Eng. A 385 (2004) 245-257.
DOI URL |
[61] |
X.G. Wang, J.L. Liu, T. Jin, X.F. Sun, Mater. Sci. Eng. A 598 (2014) 154-161.
DOI URL |
[62] |
P.C. Wo, A.H.W. Ngan, J. Mater. Res. 19 (2004) 189-201.
DOI URL |
[63] |
T.B. Britton, D. Randman, A.J. Wilkinson, J. Mater. Res. 24 (2009) 607-615.
DOI URL |
[64] |
K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Acta Mater. 62 (2014) 141-155.
DOI URL |
[65] |
H. Wen, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, Acta Mater. 61 (2013) 2769-2782.
DOI URL |
[66] | T.H. Courtney, Mechanical Behavior of Materials, Waveland Press, 2005. |
[67] |
A. Heidarzadeh, M. Neikter, N. Enikeev, L. Cui, F. Forouzan, R.T. Mousavian, Mater. Sci. Eng. A 811 (2021) 141086.
DOI URL |
[68] |
T. Shintani, Y. Murata, Acta Mater. 59 (2011) 4314-4322.
DOI URL |
[69] |
M. Naeem, H. He, S. Harjo, T. Kawasaki, F. Zhang, B. Wang, S. Lan, Z. Wu, Y. Wu, Z. Lu, C.T. Liu, X.L. Wang, Scr. Mater. 188 (2020) 21-25.
DOI URL |
[70] |
S. Graça, R. Colaço, R. Vilar, Surf. Coat. Technol. 202 (2007) 538-548.
DOI URL |
[71] |
B.B. He, M.X. Huang, Z.Y. Liang, A.H.W. Ngan, H.W. Luo, J. Shi, W.Q. Cao, H. Dong, Scr. Mater. 69 (2013) 215-218.
DOI URL |
[72] |
O. Muránsky, H. Zhu, S.L. Lim, K. Short, J. Cairney, M. Drew, Materialia 9 (2020) 100513.
DOI URL |
[1] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[2] | Xiao Zhang, Pei Wang, Dianzhong Li, Yiyi Li. Multi-scale study on the heterogeneous deformation behavior in duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 72(0): 180-188. |
[3] | César A.Terrazas, Lawrence E.Murr, Diego Bermudez, Edel Arrieta, David A.Roberson, Ryan B.Wicker. Microstructure and mechanical properties of Ti-6Al-4V-5% hydroxyapatite composite fabricated using electron beam powder bed fusion [J]. J. Mater. Sci. Technol., 2019, 35(2): 309-321. |
[4] | Wang Guanglei,Liu Jinlai,Liu Jide,Jin Tao,Sun Xiaofeng,Sun Xudong,Hu Zhuangqi. High Temperature Stress Rupture Anisotropy of a Ni-Based Single Crystal Superalloy [J]. J. Mater. Sci. Technol., 2016, 32(10): 1003-1007. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||