J. Mater. Sci. Technol. ›› 2022, Vol. 96: 212-225.DOI: 10.1016/j.jmst.2021.01.036
• Research Article • Previous Articles Next Articles
Jinshuo Zhanga, Guohua Wua,b,*(), Liang Zhanga,b,*(), Xiaolong Zhanga, Chunchang Shia, Xin Tonga
Received:
2020-10-30
Revised:
2021-01-04
Accepted:
2021-01-05
Published:
2022-01-10
Online:
2022-01-05
Contact:
Guohua Wu,Liang Zhang
About author:
liangzhang08@sjtu.edu.cn(L. Zhang).Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme[J]. J. Mater. Sci. Technol., 2022, 96: 212-225.
Alloy | Contents (wt.%) | ||||||
---|---|---|---|---|---|---|---|
Li | Cu | Mg | Zn | Zr | Sc | Al | |
A | 2.52 | 1.48 | 0.51 | 1.05 | 0.16 | 0.21 | Bal. |
B | 2.45 | 1.44 | 0.45 | 0.99 | 0.15 | / | Bal. |
Table 1 Actual chemical compositions of the studied alloys.
Alloy | Contents (wt.%) | ||||||
---|---|---|---|---|---|---|---|
Li | Cu | Mg | Zn | Zr | Sc | Al | |
A | 2.52 | 1.48 | 0.51 | 1.05 | 0.16 | 0.21 | Bal. |
B | 2.45 | 1.44 | 0.45 | 0.99 | 0.15 | / | Bal. |
Fig. 2. Microstructures of as-cast Al-2.5Li-1.5Cu-1Zn-0.5Mg-0.15 Zr-(0.2Sc) alloys: (a) OM image of as-cast Alloy A; (b) OM image of as-cast Alloy B; (c) SEM image of as-cast Alloy A surrounded by EDS mapping.
Fig. 3. Microstructures of Alloy A after solutionizing: (a) SEM graph accompanied by a spot scanning result of a residual phase, indicating Al3(Sc, Zr) particles hard to be dissolved; (b) Superlattice-centered dark field TEM graph surrounding the rod-shaped discontinuous precipitating Al3(Sc, Zr) particles in Alloy A (corresponding selected area diffraction pattern (B= [001]) and bright field image inset).
Fig. 4. OM graphs of the studied alloys suffered to different ageing schemes: (a) Alloy A aged at 150 °C for 64 h; (b) Alloy A aged at 150 °C for 128 h; (c) Alloy A aged at 175 °C for 64 h; (d) Alloy A aged at 175 °C for 128 h; (e) Alloy B aged at 150 °C for 64 h; (f) Alloy B aged at 175 °C for 64 h.
Fig. 5. TEM Micrographs of the Alloy A in different ageing states:(a)-(d) BF images of Alloy A aged at 150 °C (together with the SAED pattern, B=[$1\bar{1}0$] in image (a) and B= [$11\bar{2}$] in others); (e) Higher magnification BF image of Alloy A aged at 150 °C for 256 h, showing some fine T1 phases (B=[$11\bar{2}$]); (f) BF image together with SAED pattern(B = [$11\bar{2}$], inset) of Alloy A aged at 175 °C for 64 h.
Fig. 6. TEM Micrographs of the Alloy B in different ageing states: (a) BF images of Alloy B aged at 150 °C for 64 h (B= [$11\bar{2}$]); (b) BF image of Alloy B aged at 175 °C for 64 h (B= [$1\bar{1}0$]).
Fig. 7. Dark field TEM micrographs comparing the δ' in the studied alloys aged at different states: (a)-(d) DF images of Alloy A aged at 150 °C for 32 h, 64 h, 128 h and 256 h respectively; (e) DF images of Alloy A aged at 175 °C for 64 h, showing lager particle spacing and size compared to the samples aged at 150 °C; (f) DF image of Alloy B aged at 150 °C for 64 h.
Fig. 8. TEM Micrographs of the studied alloys aged at 150 °C for 512 h: (a) BF images of Alloy A (B=[$11\bar{2}$]); (b) δ'-centered dark field image of Alloy A; (c) BF image of Alloy B (B=[$11\bar{2}$]); (d) δ'-centered dark field image of Alloy B.
Fig. 9. High magnification TEM images (B =[$11\bar{2}$]) of Alloy A aged at 150 °C for 64 h: (a) the interaction state between lath-shaped S' and a spherical Al3(Zr, Sc) particle; (b) HRTEM image of the red box in Fig. 9(a); (c) the coexistence state of Al3(Zr, Sc), plate-like T1, and lath-shaped S' phases; (d) HRTEM image of the red box in Fig. 9(c).
Fig. 10. δ' CDF images of the Alloy A aged at 150 °C for: (a) 32 h; (b) 64 h; (c) 128 h; (d) 256 h observed near the grain boundaries (corresponding BF images inset), indicating the presence of δ'-PFZs.
Fig. 11. δ' CDF images of the Alloy A aged at 175 °C for: (a) 32 h; (b) 64 h; (c) 128 h; (d) 256 h observed near the grain boundaries (corresponding BF images inset).
Fig. 12. δ' CDF images of the Alloy B: (a) aged at 150 °C for 64 h; (b) at 175 °C for 64 h observed near the grain boundaries (corresponding BF images inset).
Fig. 15. Typical engineering stress-strain curves and detailed values of the samples in this study: (a) Engineering stress-strain curves of the selected samples in this study; (b) digest of UTS-EL data of cast Al-Li-Cu alloys and high-performance 2XXX alloys [7,20,28,43] ; (c) detailed mechanical properties values of the studied alloys suffered to different ageing scheme.
Y | ||||||
---|---|---|---|---|---|---|
X | Li | Cu | Mg | Zn | Zr | Sc |
Mg | 20 | 100 | 60 | 100 | 70 | 70 |
Cu | 50 | 100 | 100 | 70 | 40 | 90 |
Va | 10 | 30 | 10 | 50 | 80 | 8 |
Table 2 Binding energies (meV) calculated according to DFT for various X-Y-Va cluster configurations (the third line is the binary combination of Y-Va) [46].
Y | ||||||
---|---|---|---|---|---|---|
X | Li | Cu | Mg | Zn | Zr | Sc |
Mg | 20 | 100 | 60 | 100 | 70 | 70 |
Cu | 50 | 100 | 100 | 70 | 40 | 90 |
Va | 10 | 30 | 10 | 50 | 80 | 8 |
Fig. 17. (a) Measured δ'-PFZs half widths in the studied alloys aged at 150 °C and 175 °C plotted as a function of square root of the ageing time; (b) the scatter plot and linear fitting of all measured half-width of δ'-PFZs and corresponding EL in alloy A.
[1] | K.K. Sankaran, N.J. Grant, Mater. Sci. Eng. 44 (1980) 213-227. |
[2] |
K. Dinsdale, B. Noble, S.J. Harris, P.J. Gregson, Mater. Sci. Eng. A 104 (1988) 75-84.
DOI URL |
[3] |
P.J. Gregson, K. Dinsdale, S.J. Harris, B. Noble, Mater. Sci. Technol. 3 (1987) 7-13.
DOI URL |
[4] |
R.J. Rioja, J. Liu, Metall. Mater. Trans. A 43 (2012) 3325-3337.
DOI URL |
[5] |
T.H. Sanders, E.A. Ludwiczak, R.R. Sawtell, Mater. Sci. Eng. 43 (1980) 247-260.
DOI URL |
[6] |
B.P. Gu, G.L. Liedl, J.H. Kulwicki, T.H. Sanders, Mater. Sci. Eng. 70 (1985) 217-228.
DOI URL |
[7] |
S.L. Nikitin, O.E. Osintsev, S.Y. Betsofen, Russ. Metall. 2010 (2010) 1041-1045.
DOI URL |
[8] |
A. Chen, G. Wu, L. Zhang, X. Zhang, C. Shi, Y. Li, Mater. Sci. Eng. A 677 (2016) 29-40.
DOI URL |
[9] |
B. Noble, G.E. Thompson, Metal Sci. J. 5 (1971) 114-120.
DOI URL |
[10] |
D. Williams, J. Edington, Met. Sci. 9 (1975) 529-532.
DOI URL |
[11] |
P.J. Gregson, H.M. Flower, Acta Metall. 33 (1985) 527-537.
DOI URL |
[12] |
B. Noble, S.J. Harris, K. Dinsdale, J. Mater. Sci. 17 (1982) 461-468.
DOI URL |
[13] |
T.H. Sanders, E.A. Starke, Acta Metall. 30 (1982) 927-939.
DOI URL |
[14] |
S.C. Jha, T.H. Sanders, M.A. Dayananda, Acta Metall. 35 (1987) 473-482.
DOI URL |
[15] |
V. Radmilovic, A.G. Fox, R.M. Fisher, G. Thomas, Scr. Metall. 23 (1989) 75-79.
DOI URL |
[16] |
A.K. Vasudevan, R. Doherty, Acta Metall. 35 (1987) 1193-1219.
DOI URL |
[17] | D.W. Pashley, M.H. Jacobs, J.T. Vietz, Philos. Mag. 16 (1967) 51-76. |
[18] | E.A. Starke, JOM 22 (1970) 54-63. |
[19] |
Q. Luo, C. Zhai, Q. Gu, W. Zhu, Q. Li, J. Alloys Compd. 814 (2019), 152297.
DOI URL |
[20] |
J. Zhang, G. Wu, L. Zhang, X. Zhang, C. Shi, J. Sun, Mater. Charact. 160 (2019),110089.
DOI URL |
[21] | O. Jensrud, N. Ryum, Mater. Sci. Eng. 64 (1984) 229-236. |
[22] |
K. Mahalingam, B.P. Gu, G.L. Liedl, T.H. Sanders, Acta Metall. 35 (1987) 483-498.
DOI URL |
[23] |
Y. Pang, Q. Li, Scr. Mater. 130 (2017) 223-228.
DOI URL |
[24] |
W.A. Cassada, G.J. Shiflet, E.A. Starke, Metall. Trans. A 22 (1991) 287-297.
DOI URL |
[25] |
C.K.S. Moy, M. Weiss, J.H. Xia, G. Sha, S.P. Ringer, G. Ranzi, Mater. Sci. Eng. A 552 (2012) 48-60.
DOI URL |
[26] |
P.Z.C. Yang, R.H. Wang, L.F. Cao, J.Y. Zhang, G. Liu, B.A. Chen, J. Sun, Acta Mater. 119 (2016) 68-79.
DOI URL |
[27] |
B.A. Chen, L. Pan, R.H. Wang, G. Liu, P.M. Cheng, L. Xiao, J. Sun, Mater. Sci. Eng. A 530 (2011) 607-617.
DOI URL |
[28] |
X. Zhang, L. Zhang, G. Wu, J. Sun, M. Rong, C.C. Hsieh, Y. Yu, Mater. Charact. 142 (2018) 223-236.
DOI URL |
[29] | Y. Miura, C.H. Joh, T. Katsube, Mater. Sci. Forum 331 (2000) 1031-1036. |
[30] |
M. Gazizov, V. Teleshov, V. Zakharov, R. Kaibyshev, J. Alloys Compd. 509 (2011) 9497-9507.
DOI URL |
[31] |
J. Ryset, N. Ryum, Int. Mater. Rev. 50 (2005) 19-44.
DOI URL |
[32] |
M.L. Kharakterova, D.G. Eskin, L.S. Toropova, Acta Metall. Mater. 42 (1994) 2285-2290.
DOI URL |
[33] |
M. Jia, Z. Zheng, Z. Gong, J. Alloys Compd. 614 (2014) 131-139.
DOI URL |
[34] | I.G. Brodova, D.V. Bashlikov, I.V. Polents, Mater. Sci.Forum 262-2 (1998) 589-594. |
[35] |
E. Nes, H. Billdal, Acta Metall. 25 (1977) 1039-1046.
DOI URL |
[36] |
N. Blake, M.A. Hopkins, J Mater. Sci. 20 (1985) 2861-2867.
DOI URL |
[37] |
D.B. Williams, J.W. Edington, Met. Sci. 9 (1975) 529-532.
DOI URL |
[38] | J.C. Huang, A.J. Ardell, Mater. Sci. Technol. 3 (1987) 176-188. |
[39] |
A.K. Gupta, P. Gaunt, M.C. Chaturvedi, Philos. Mag. 55 (1987) 375-387.
DOI URL |
[40] |
P. Ratchev, B. Verlinden, P. De Smet, P. Van Houtte, Acta Mater. 46 (1998) 3523-3533.
DOI URL |
[41] |
X. Zhang, L. Zhang, G. Wu, C. Shi, J. Zhang, J. Mater. Sci. 54 (2018) 791-811.
DOI URL |
[42] |
L.A.H. Terrones, S.N. Monteiro, Mater. Charact. 58 (2007) 156-161.
DOI URL |
[43] |
W. Liang, Z. Cong, X. Li, N. Ma, H. Wang, J. Alloys Compd. 739 (2018) 270-279.
DOI URL |
[44] | S. Saikawa, S. Sugioka, K. Nakai, Y. Sugiura, A. Kamio, J. Jpn, Inst. Light Met. 45 (1995) 261-266. |
[45] |
P.J. Gregson, H.M. Flower, C.N.J. Tite, A.K. Mukhopadhyay, Mater. Sci. Technol. 2 (1986) 349-353.
DOI URL |
[46] |
J. Peng, S. Bahl, A. Shyam, J.A. Haynes, D. Shin, Acta Mater. 196 (2020) 747-758.
DOI URL |
[47] | T. Nishizawa, America, 2008. |
[48] | B. Noble, G.E. Thompson, Met. Sci. J. 6 (1972) 167-174. |
[49] |
R. Yoshimura, T.J. Konno, E. Abe, K. Hiraga, Acta Mater. 51 (2003) 4251-4266.
DOI URL |
[50] | S.L. Lee, C.T. Wu, Y.T. Chen, J. Mater. Eng. Perform. 24 (2015) 1168-1172. |
[51] |
K. Yu, W.X. Li, J. Zhao, Mater. Sci. Eng. A 368 (2004) 88-93.
DOI URL |
[52] | G. Meyrick, G.W. Powell, Annu. Rev. Mater. Res. 3 (2003) 327-362. |
[53] |
E. Hashimoto, K. Miura, T. Kino, R. Matsushita, M. Koyama, Jpn. J. Appl. Phys. 18 (2014) 881-887.
DOI URL |
[54] |
K.K.O. Brittain, Solid State Commun. 40 (1979) 933-940.
DOI URL |
[1] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[2] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[3] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[4] | Yinbao Tian, Junqi Shen, Shengsun Hu, Jian Gou, Yan Cui. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys [J]. J. Mater. Sci. Technol., 2021, 74(0): 35-45. |
[5] | C.C. Zhang, H.L. Wei, T.T. Liu, L.Y. Jiang, T. Yang, W.H. Liao. Influences of residual stress and micro-deformation on microstructures and mechanical properties for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 75(0): 174-183. |
[6] | Weiming Yang, Xinfa Sun, Haishun Liu, Changfeng Yu, Wenyu Li, Akihisa Inoue, Daniel Şopu, Jürgen Eckert, Chunguang Tang. Structural homology of the strength for metallic glasses [J]. J. Mater. Sci. Technol., 2021, 81(0): 123-130. |
[7] | Liang Deng, Long Zhang, Konrad Kosiba, René Limbach, Lothar Wondraczek, Gang Wang, Dongdong Gu, Uta Kühn, Simon Pauly. CuZr-based bulk metallic glass and glass matrix composites fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 81(0): 139-150. |
[8] | Jixing Lin, Xian Tong, Kun Wang, Zimu Shi, Yuncang Li, Matthew Dargusch, Cuie Wen. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 68(0): 76-90. |
[9] | Xiaoyang Yi, Kuishan Sun, Jingjing Liu, Xiaohang Zheng, Xianglong Meng, Zhiyong Gao, Wei Cai. Tailoring the microstructure, martensitic transformation and strain recovery characteristics of Ti-Ta shape memory alloys by changing Hf content [J]. J. Mater. Sci. Technol., 2021, 83(0): 123-130. |
[10] | Jingfeng Zou, Lifeng Ma, Weitao Jia, Qichi Le, Gaowu Qin, Yuan Yuan. Microstructural and mechanical response of ZK60 magnesium alloy subjected to radial forging [J]. J. Mater. Sci. Technol., 2021, 83(0): 228-238. |
[11] | Sajian Wu, Jing Li, Changji Li, Yiyi Li, Liangyin Xiong, Shi Liu. Preliminary study on the fabrication of 14Cr-ODS FeCrAl alloy by powder forging [J]. J. Mater. Sci. Technol., 2021, 83(0): 49-57. |
[12] | Zijian Yu, Xi Xu, Adil Mansoor, Baotian Du, Kang Shi, Ke Liu, Shubo Li, Wenbo Du. Precipitate characteristics and their effects on the mechanical properties of as-extruded Mg-Gd-Li-Y-Zn alloy [J]. J. Mater. Sci. Technol., 2021, 88(0): 21-35. |
[13] | Z.W. Yang, J.M. Lin, J.F. Zhang, Q.W. Qiu, Y. Wang, D.P. Wang, J. Song. An effective approach for bonding of TZM and Nb-Zr system: Microstructure evolution, mechanical properties, and bonding mechanism [J]. J. Mater. Sci. Technol., 2021, 84(0): 16-26. |
[14] | Xiaozhao Ma, Zhilei Xiang, Chao Tan, Zhitian Wang, Yingying Liu, Ziyong Chen, Qun Shu. Influences of boron contents on microstructures and mechanical properties of as-casted near α titanium alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 1-18. |
[15] | Ahmad Ostovari Moghaddam, Nataliya A. Shaburova, Marina N. Samodurova, Amin Abdollahzadeh, Evgeny A. Trofimov. Additive manufacturing of high entropy alloys: A practical review [J]. J. Mater. Sci. Technol., 2021, 77(0): 131-162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||