J. Mater. Sci. Technol. ›› 2022, Vol. 97: 229-238.DOI: 10.1016/j.jmst.2021.05.015
• Research Article • Previous Articles Next Articles
Shiyu Wua, Dongxu Qiaoa, Haitao Zhanga, Junwei Miaoa, Hongliang Zhaob, Jun Wangc, Yiping Lua,*(), Tongmin Wanga, Tingju Lia
Received:
2021-03-21
Revised:
2021-05-06
Accepted:
2021-05-06
Published:
2021-07-02
Online:
2021-07-02
Contact:
Yiping Lu
About author:
* E-mail address: luyiping@dlut.edu.cn (Y. Lu).Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures[J]. J. Mater. Sci. Technol., 2022, 97: 229-238.
RHEAs | BCC(Å) | FCC(Å) |
---|---|---|
ACH0 | 3.2987 | - |
ACH5 | 3.2970 | 4.5656 |
ACH15 | 3.2904 | 4.5212 |
ACH25 | 3.2862 | 4.4889 |
ANH0 | 3.2958 | - |
ANH5 | 3.2928 | 4.6062 |
ANH15 | 3.2862 | 4.5959 |
ANH25 | 3.2795 | 4.5803 |
HfC* | 4.638 | |
NbC* | 4.470 | |
TaC* | 4.455 |
Table 1 Lattice constants of BCC phase and FCC phase in CxHf0.25NbTaW0.5 RHEAs.
RHEAs | BCC(Å) | FCC(Å) |
---|---|---|
ACH0 | 3.2987 | - |
ACH5 | 3.2970 | 4.5656 |
ACH15 | 3.2904 | 4.5212 |
ACH25 | 3.2862 | 4.4889 |
ANH0 | 3.2958 | - |
ANH5 | 3.2928 | 4.6062 |
ANH15 | 3.2862 | 4.5959 |
ANH25 | 3.2795 | 4.5803 |
HfC* | 4.638 | |
NbC* | 4.470 | |
TaC* | 4.455 |
Fig. 2. EPMA-BSE micrographs of the as-cast CxHf0.25NbTaW0.5: (a) ACH0 RHEA, (b) ACH5 RHEA, (c) ACH15 RHEA, and (d) ACH25 RHEA, where DR, ID, M, and C represent the dendrite, interdendritic, matrix, and carbide regions, respectively.
RHEAs | Region | W | Hf | Nb | Ta | C |
---|---|---|---|---|---|---|
ACH0 | DR | 26.8 | 4.9 | 26.2 | 42.0 | - |
ID | 15.1 | 18.5 | 34.0 | 32.5 | - | |
ACH5 | DR | 23.9 | 5.7 | 29.3 | 37.5 | 3.6 |
ID | 9.1 | 19.3 | 24.0 | 22.8 | 24.8 | |
ACH15 | M | 23.9 | 5.8 | 30.2 | 37.5 | 2.5 |
C | 1.4 | 26.0 | 14.6 | 18.7 | 39.3 | |
ACH25 | M | 25.8 | 4.3 | 29.0 | 38.9 | 1.9 |
C | 1.3 | 21.4 | 15.6 | 20.6 | 41.1 | |
ANH0 | DR | 25.1 | 4.8 | 29.0 | 41.2 | - |
ID | 13.1 | 21.3 | 33.8 | 31.8 | - | |
ANH5 | DR | 23.0 | 6.9 | 30.4 | 38.6 | 1.0 |
ID | 14.0 | 10.3 | 38.7 | 31.7 | 5.3 | |
ANH15 | M | 23.4 | 5.2 | 29.9 | 37.7 | 3.8 |
C | 2.8 | 32.4 | 13.8 | 17.6 | 33.5 | |
ANH25 | M | 25.0 | 4.5 | 27.1 | 37.5 | 5.9 |
C | 5.2 | 27.0 | 14.3 | 20.5 | 33.1 |
Table 2 Chemical compositions of the dendritic (DR), interdendritic (ID), matrix (M), and carbide (C) regions of the alloys measured by the EPMA-WDS (the atomic percentage).
RHEAs | Region | W | Hf | Nb | Ta | C |
---|---|---|---|---|---|---|
ACH0 | DR | 26.8 | 4.9 | 26.2 | 42.0 | - |
ID | 15.1 | 18.5 | 34.0 | 32.5 | - | |
ACH5 | DR | 23.9 | 5.7 | 29.3 | 37.5 | 3.6 |
ID | 9.1 | 19.3 | 24.0 | 22.8 | 24.8 | |
ACH15 | M | 23.9 | 5.8 | 30.2 | 37.5 | 2.5 |
C | 1.4 | 26.0 | 14.6 | 18.7 | 39.3 | |
ACH25 | M | 25.8 | 4.3 | 29.0 | 38.9 | 1.9 |
C | 1.3 | 21.4 | 15.6 | 20.6 | 41.1 | |
ANH0 | DR | 25.1 | 4.8 | 29.0 | 41.2 | - |
ID | 13.1 | 21.3 | 33.8 | 31.8 | - | |
ANH5 | DR | 23.0 | 6.9 | 30.4 | 38.6 | 1.0 |
ID | 14.0 | 10.3 | 38.7 | 31.7 | 5.3 | |
ANH15 | M | 23.4 | 5.2 | 29.9 | 37.7 | 3.8 |
C | 2.8 | 32.4 | 13.8 | 17.6 | 33.5 | |
ANH25 | M | 25.0 | 4.5 | 27.1 | 37.5 | 5.9 |
C | 5.2 | 27.0 | 14.3 | 20.5 | 33.1 |
Fig. 4. EPMA-BSE microstructure of the annealed CxHf0.25NbTaW0.5 after etching: (a) ANH0 RHEA, (b) ANH5 RHEA, (c) ANH15 RHEA, and (d) ANH25 RHEA, where ID and M represent interdendrites and matrix, respectively.
Fig. 5. (a) TEM micrographs of annealed ANH25 RHEA; (b)-(c) SAED patterns corresponding to matrix and carbides regions in (a); (d) are HRTEM pictures of FCC-MC phases; (e) TEM-EDS elemental mappings of Hf, Nb, Ta, W, C
RHEAs | Yield stress, MPa | Peak stress, MPa | Fracture strain, % | Hardness, HV |
---|---|---|---|---|
ACH0 | 1037 | 2568 | 42.7 | 403 |
ACH5 | 1192 | 2417 | 37.8 | 444 |
ACH10 | 1230 | 2700 | 41.7 | 460 |
ACH15 | 1265 | 2629 | 38.1 | 475 |
ACH20 | 1293 | 2631 | 36.9 | 490 |
ACH25 | 1317 | 2584 | 31.9 | 506 |
ANH0 | 942 | 1720 | 25.0 | 355 |
ANH5 | 1115 | 2044 | 36.7 | 423 |
ANH10 | 1194 | 2742 | 41.1 | 444 |
ANH15 | 1218 | 2646 | 39.7 | 469 |
ANH20 | 1279 | 2673 | 31.1 | 488 |
ANH25 | 1337 | 2799 | 31.0 | 514 |
Table 3 Mechanical properties of CxHf0.25NbTaW0.5 RHEAs at RT.
RHEAs | Yield stress, MPa | Peak stress, MPa | Fracture strain, % | Hardness, HV |
---|---|---|---|---|
ACH0 | 1037 | 2568 | 42.7 | 403 |
ACH5 | 1192 | 2417 | 37.8 | 444 |
ACH10 | 1230 | 2700 | 41.7 | 460 |
ACH15 | 1265 | 2629 | 38.1 | 475 |
ACH20 | 1293 | 2631 | 36.9 | 490 |
ACH25 | 1317 | 2584 | 31.9 | 506 |
ANH0 | 942 | 1720 | 25.0 | 355 |
ANH5 | 1115 | 2044 | 36.7 | 423 |
ANH10 | 1194 | 2742 | 41.1 | 444 |
ANH15 | 1218 | 2646 | 39.7 | 469 |
ANH20 | 1279 | 2673 | 31.1 | 488 |
ANH25 | 1337 | 2799 | 31.0 | 514 |
RHEAs | Temperature, K | Yield stress, MPa | Fracture strain, % |
---|---|---|---|
ACH0 | 1273 | 584 | >50 |
1473 | 577 | >50 | |
1673 | 455 | >50 | |
ACH15 | 1273 | 768 | >50 |
1473 | 733 | >50 | |
1673 | 639 | >50 | |
ACH25 | 1273 | 868 | >50 |
1473 | 792 | >50 | |
1673 | 749 | >50 |
Table 4 Mechanical properties of CxHf0.25NbTaW0.5 RHEAs at HT obtained via compressive stress-strain curves.
RHEAs | Temperature, K | Yield stress, MPa | Fracture strain, % |
---|---|---|---|
ACH0 | 1273 | 584 | >50 |
1473 | 577 | >50 | |
1673 | 455 | >50 | |
ACH15 | 1273 | 768 | >50 |
1473 | 733 | >50 | |
1673 | 639 | >50 | |
ACH25 | 1273 | 868 | >50 |
1473 | 792 | >50 | |
1673 | 749 | >50 |
Fig. 8. IPF maps (a and c) and distribution diagrams of recrystallized grains (b and d) of ACH0 (a and c) and ACH25 (b and d) specimens hot-compressed to 50% reduction at 1473K. Here D and R represent the volume fractions of deformed and recrystallized grains, respectively.
Fig. 9. (a) Temperature dependences of the yield strength of NbTaW0.5, ACH0 and ACH25 RHEAs, (b) the influence of volume fraction of the FCC carbide on the yield strength of CxHf0.25NbTaW0.5 RHEAs.
Fig. 10. Temperature dependence of the yield strength of CxHf0.25NbTaW0.5 RHEAs and some classic RHEAs (a) and the relationship between yield strength of CxHf0.25NbTaW0.5 RHEAs and some RHEAs at 1473 K and plasticity at 298 K (b).
[1] | J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303 http://doi.org/10.1002/adem.200300567. |
[2] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218 http://doi.org/10.1016/j.msea.2003.10.257. |
[3] | D. Miracle, J. Miller, O. Senkov, C. Woodward, M. Uchic, J. Tiley, Entropy 16 (2014) 494-525 http://doi.org/10.3390/e16010494. |
[4] | D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511 http://doi.org/10.1016/j.actamat.2016.08.081. |
[5] | M. Tsai, J. Yeh, Mater. Res. Lett. 2 (2014) 107-123 http://doi.org/10.1080/21663831.2014.912690. |
[6] | J. Yeh, JOM 65 (2013) 1759-1771 http://doi.org/10.1007/s11837-013-0761-6. |
[7] | O.N. Senkov, D.B. Miracle, K.J. Chaput, J. Couzinie, J. Mater. Res. 33 (2018) 3092-3128 http://doi.org/10.1557/jmr.2018.153. |
[8] | O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19 (2011) 698-706 http://doi.org/10.1016/j.intermet.2011.01.004. |
[9] | B. Zhang, M.C. Gao, Y. Zhang, S. Yang, S.M. Guo, Mater. Sci. Technol. 31 (2015) 1207-1213 http://doi.org/10.1179/1743284715Y.0000000031. |
[10] | Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, K.F. Yao, Intermetallics 84 (2017) 153-157 http://doi.org/10.1016/j.intermet.2017.01.007. |
[11] | O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle C. F. Woodward, J. Mater. Sci. 47 (2012) 4062-4074 http://doi.org/10.1007/s10853-012-6260-2. |
[12] | M. Todai, T. Nagase, T. Hori, A. Matsugaki, A. Sekita, T. Nakano, Scr. Mater. 129 (2017) 65-68 http://doi.org/10.1016/j.scriptamat.2016.10.028. |
[13] | H. Chen, A. Kauffmann, S. Laube, I.C. Choi, R. Schwaiger, Y. Huang, K. Lichten-berg, F. Müller, B. Gorr, H.J. Christ, Metall. Mater. Trans. A 49 (2018) 772-781 http://doi.org/10.1007/s11661-017-4386-1. |
[14] | O.N. Senkov, C. Woodward, D.B. Miracle, JOM 66 (2014) 2030-2042 http://doi.org/10.1007/s11837-014-1066-0. |
[15] | O. Senkov, D. Isheim, D. Seidman, A. Pilchak, Entropy 18 (2016) 102 http://doi.org/10.3390/e18030102. |
[16] | O.N. Senkov, S. Rao, K.J. Chaput, C. Woodward, Acta Mater. 151 (2018) 201-215 http://doi.org/10.1016/j.actamat.2018.03.065. |
[17] | O.N. Senkov, S.V. Senkova, C. Woodward, D.B. Miracle, Acta Mater. 61 (2013) 1545-1557 http://doi.org/10.1016/j.actamat.2012.11.032. |
[18] | H. Chen, A. Kauffmann, B. Gorr, D. Schliephake, C. Seemüller, J.N. Wagner, H.J. Christ, M. Heilmaier, J. Alloy. Compd. 661 (2016) 206-215 http://doi.org/10.1016/j.jallcom.2015.11.050. |
[19] | N.D. Stepanov, N.Y. Yurchenko, E.S. Panina, M.A. Tikhonovsky, S.V. Zherebtsov, Mater. Lett. 188 (2017) 162-164 http://doi.org/10.1016/j.matlet.2016.11.030. |
[20] | M.C. Gao, C.S. Carney, A. Dogan, P.D. Jablonksi, J.A. Hawk, D.E. Alman, JOM 67 (2015) 2653-2669 http://doi.org/10.1007/s11837-015-1617-z. |
[21] | N.Y. Yurchenko, N.D. Stepanov, S.V. Zherebtsov, M.A. Tikhonovsky, G.A. Sal-ishchev, Mater. Sci. Eng. A 704 (2017) 82-90 http://doi.org/10.1016/j.msea.2017.08.019. |
[22] | N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo, H.Z. Fu, J. Alloy. Compd. 660 (2016) 197-203 http://doi.org/10.1016/j.jallcom.2015.11.091. |
[23] | B. Liu, J. Wang, J. Chen, Q. Fang, Y. Liu, JOM 69 (2017) 651-656 http://doi.org/10.1007/s11837-017-2267-0. |
[24] | Q. Wei, Q. Shen, J. Zhang, Y. Zhang, G. Luo, L. Zhang, J. Alloy. Compd. 777 (2019) 1168-1175 http://doi.org/10.1016/j.jallcom.2018.11.111. |
[25] | Z. Guo, A. Zhang, J. Han, J. Meng, J. Mater. Sci. 54 (2019) 5844-5851 http://doi.org/10.1007/s10853-018-03280-z. |
[26] | A. Takeuchi, A. Inoue, Mater. Trans. 46 (2005) 2817-2829 http://doi.org/10.2320/matertrans.46.2817. |
[27] | Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10 (2008) 534-538 http://doi.org/10.1002/adem.200700240. |
[28] | S. Guo, C.T. Liu, Prog. Nat. Sci. 21 (2011) 433-446 http://doi.org/10.1016/S1002-0071(12)60080-X. |
[29] | Y. Zhang, Z.P. Lu, S.G. Ma, P.K. Liaw, Z. Tang, Y.Q. Cheng, M.C. Gao, MRS Com-mun. 4 (2014) 57-62 http://doi.org/10.1557/mrc.2014.11. |
[30] | T. A, I. A, Mater. Trans. 12 (2005) 2817-2829 http://doi.org/10.2320/matertrans.46.2817. |
[31] | R.R. Eleti, A.H. Chokshi, A. Shibata, N. Tsuji, Acta Mater. 183 (2020) 64-77 http://doi.org/10.1016/j.actamat.2019.11.001. |
[32] | H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, M.C. Gao, J. Alloy. Compd. 696 (2017) 1139-1150 http://doi.org/10.1016/j.jallcom.2016.11.188. |
[33] | H.W. Yao, J.W. Qiao, M.C. Gao, J.A. Hawk, S.G. Ma, H.F. Zhou, Y. Zhang, Mater. Sci. Eng. A 674 (2016) 203-211 http://doi.org/10.1016/j.msea.2016.07.102. |
[34] | B. Kang, J. Lee, H.J. Ryu, S.H. Hong, J. Alloy. Compd. 767 (2018) 1012-1021 http://doi.org/10.1016/j.jallcom.2018.07.145. |
[35] | C. Lee, G. Song, M.C. Gao, R. Feng, P. Chen, J. Brechtl, Y. Chen, K. An, W. Guo, J.D. Poplawsky, Acta Mater. 160 (2018) 158-172 http://doi.org/10.1016/j.actamat.2018.08.053. |
[36] | O.N. Senkov, A.L. Pilchak, S.L. Semiatin, Metall. Mater. Trans. A 49A (2018) 2876-2892 http://doi.org/10.1007/s11661-018-4646-8. |
[37] | S. Chen, K. Tseng, Y. Tong, W. Li, C. Tsai, J. Yeh, P.K. Liaw, J. Alloy. Compd. 795 (2019) 19-26 http://doi.org/10.1016/j.jallcom.2019.04.291. |
[38] | L.A. Gypen, A. Deruyttere, J. Less-Common Metals 219-240 (1982) http://doi.org/10.1016/0022-5088(82)90208-9. |
[39] | J.W. Christian, Metall. Trans. A (1983) 1237-1256 http://doi.org/10.1007/BF02664806. |
[40] | F.G. Coury, M. Kaufman, A.J. Clarke, Acta Mater 175 (2019) 66-81 http://doi.org/10.1016/j.actamat.2019.06.006. |
[41] |
J.S. Zhang, P.E. Li, W.X. Chen, J.Z. Jin, Scripta Metallurgica 23 (1989) 547-551 http://doi.org/https://doi.org/, doi: 10.1016/0036-9748(89)90449-3.
DOI |
[42] |
J.S. Zhang, P.E. Li, J.Z. Jin, Acta Metallurgica et Materialia 39 (1991) 3063-3070 http://doi.org/https://doi.org/, doi: 10.1016/0956-7151(91)90039-4.
DOI |
[43] | H. Okamoto, J. Phase Equilib. Diffus. 38 (2017) 160-170 http://doi.org/10.1007/s11669-016-0508-5. |
[44] | W.F. BRIZES, H.D. BRODY, J. Am. Ceram. Soc. 55 (1972) 277-278 http://doi.org/10.1111/j.1151-2916.1972.tb11282.x. |
[45] | K. Frisk, A. Fernández Guillermet, J. Alloy. Compd. 238 (1996) 167-179 http://doi.org/10.1016/0925-8388(96)02197-4. |
[46] | Y. Pan, P. Zhou, Y. Peng, Y. Du, F. Luo, Calphad-Comput. Coupling Ph. Diagrams Thermochem. 53 (2016) 1-9 http://doi.org/10.1016/j.calphad.2016.02.001. |
[47] | J.K. Jensen, B.A. Welk, R.E.A. Williams, J.M. Sosa, D.E. Huber, O.N. Senkov, G.B. Viswanathan, H.L. Fraser, Scr. Mater. 121 (2016) 1-4 http://doi.org/10.1016/j.scriptamat.2016.04.017. |
[48] | M. Zhang, X. Zhou, W. Zhu, J. Li, Mater. Trans. A 49A (2018) 1313-1327 http://doi.org/10.1007/s11661-018-4472-z. |
[49] | O.N. Senkov, C.F. Woodward, Mater. Sci. Eng. A 529 (2011) 311-320 http://doi.org/10.1016/j.msea.2011.09.033. |
[50] | Y. Liu, Y. Zhang, H. Zhang, N. Wang, X. Chen, H. Zhang, Y. Li, J. Alloy. Compd. 694 (2017) 869-876 http://doi.org/10.1016/j.jallcom.2016.10.014. |
[51] | C. Juan, M. Tsai, C. Tsai, C. Lin, W. Wang, C. Yang, S. Chen, S. Lin, J. Yeh, Inter-metallics 62 (2015) 76-83 http://doi.org/10.1016/j.intermet.2015.03.013. |
[52] | N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, Y.Q. Su, J.J. Guo, H.Z. Fu, Mater. Des. 81 (2015) 87-94 http://doi.org/10.1016/j.matdes.2015.05.019. |
[53] | Z.D. Han, H.W. Luan, X. Liu, N. Chen, X.Y. Li, Y. Shao, K.F. Yao, Mater. Sci. Eng. A 712 (2018) 380-385 http://doi.org/10.1016/j.msea.2017.12.004. |
[54] | S.J. Wu, X.D. Wang, J.T. Lu, R.T. Qu, Z.F. Zhang, Adv. Eng. Mater. (2018) 20 http://doi.org/10.1002/adem.201800028.. |
[1] | Young-Kyun Kim, Kee-Ahn Lee. Effect of carrier gas species on the microstructure and compressive deformation behaviors of ultra-strong pure copper manufactured by cold spray additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 97(0): 264-271. |
[2] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[3] | H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang. Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens [J]. J. Mater. Sci. Technol., 2022, 97(0): 239-253. |
[4] | Xing Qi, Naoki Takata, Asuka Suzuki, Makoto Kobashi, Masaki Kato. Change in microstructural characteristics of laser powder bed fused Al-Fe binary alloy at elevated temperature [J]. J. Mater. Sci. Technol., 2022, 97(0): 38-53. |
[5] | Jing Wei, Peng Guo, Hao Li, Peiling Ke, Aiying Wang. Insights on high temperature friction mechanism of multilayer ta-C films [J]. J. Mater. Sci. Technol., 2022, 97(0): 29-37. |
[6] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[7] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[8] | Pengyu Wen, Bin Hu, Jiansheng Han, Haiwen Luo. A strong and ductile medium Mn steel manufactured via ultrafast heating process [J]. J. Mater. Sci. Technol., 2022, 97(0): 54-68. |
[9] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
[10] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[11] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[12] | Jingjing Pan, Jingyang Wang. Temperature-mediated supramolecular assemblies give rise to hierarchical boron nitride nano-ribbon networks with different micro-topology [J]. J. Mater. Sci. Technol., 2022, 96(0): 160-166. |
[13] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[14] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
[15] | Luqing Cui, Cheng-Han Yu, Shuang Jiang, Xiaoyu Sun, Ru Lin Peng, Jan-Erik Lundgren, Johan Moverare. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X [J]. J. Mater. Sci. Technol., 2022, 96(0): 295-307. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||