J. Mater. Sci. Technol. ›› 2022, Vol. 97: 38-53.DOI: 10.1016/j.jmst.2021.04.038
• Research Article • Previous Articles Next Articles
Xing Qia,*(), Naoki Takataa,*(
), Asuka Suzukia, Makoto Kobashia, Masaki Katob
Received:
2021-03-09
Revised:
2021-04-06
Accepted:
2021-04-14
Published:
2021-06-17
Online:
2021-06-17
Contact:
Xing Qi,Naoki Takata
About author:
takata.naoki@material.nagoya-u.ac.jp (N. Takata).Xing Qi, Naoki Takata, Asuka Suzuki, Makoto Kobashi, Masaki Kato. Change in microstructural characteristics of laser powder bed fused Al-Fe binary alloy at elevated temperature[J]. J. Mater. Sci. Technol., 2022, 97: 38-53.
Element | Fe | Si | O | Al |
---|---|---|---|---|
Alloy powder | 2.45 | 0.11 | 0.22 | Bal. |
As-fabricated sample | 2.46 | 0.12 | 0.14 | Bal. |
Table 1 Chemical compositions of the experimental Al-2.5 wt% Fe alloy (mass%).
Element | Fe | Si | O | Al |
---|---|---|---|---|
Alloy powder | 2.45 | 0.11 | 0.22 | Bal. |
As-fabricated sample | 2.46 | 0.12 | 0.14 | Bal. |
Fig. 1. Optical micrographs depicting the melt-pool morphologies of (a) as-fabricated Al-2.5 wt% Fe alloy sample and (b) sample exposed to 300 °C for 1000 h.
Fig. 2. EBSD orientation maps coupled with grain boundaries showing the α-Al (fcc) matrix of (a) as-fabricated Al-2.5 wt% Fe alloy sample and samples exposed to 300 °C for (b) 100 h and (c) 1000 h. The colors represent orientations along the Z direction (building direction) in terms of the orientation color code, and the fine lines and bold lines in the maps correspond to misorientations (θ) of 1 < θ < 15° and θ > 15°, respectively.
Fig. 3. (a) Fraction of HABs, (b) average orientation angle, and (c) mean spacing of HABs for the α-Al matrix of the as-fabricated sample upon exposure to 300 °C for different periods.
Fig. 5. SEM micrographs depicting the representative microstructure of (a) as-fabricated sample and samples exposed to 300 °C for (b) 10 h, (c) 100 h, and (d) 1000 h.
Fig. 6. TEM images showing the Al-Fe phases distributed inside the melt pool of (a) as-fabricated sample and samples exposed to 300 °C for (b) 10 h, (c) 100 h, and (d) 1000 h.
Fig. 7. (a) TEM bright-field images showing the Al-Fe phases distributed inside the melt pool and (b) electron diffraction patterns captured in the enclosed area of the experimental Al-2.5 wt% Fe alloy sample exposed to 300 °C for 1000 h.
Fig. 8. HAADF-STEM images and the corresponding EDS elemental mappings of Al-Fe phase particles dispersed in the α-Al matrix of the experimental samples exposed to 300 °C for (a) 10 h and (b) 1000 h.
Fig. 11. Nominal strain-stress curves of the experimental specimens subjected to tensile deformation at ambient temperature along (a) the Z direction and (b) the X/Y direction.
0.2% Proof stress / MPa | Tensile stress / MPa | Total elongation /% | ||||
---|---|---|---|---|---|---|
Deformation direction | Z | X/Y | Z | X/Y | Z | X/Y |
As-fabricated | 233±1 | 266±2 | 295±2 | 309±3 | 4.3 ± 0.5 | 8.8 ± 0.3 |
10 h | 243±4 | 246±5 | 299±3 | 308±1 | 4.8 ± 0.2 | 8.4 ± 0.1 |
100 h | 227±8 | 237±6 | 286±5 | 292±2 | 4.1 ± 0.1 | 7.5 ± 0.6 |
1000 h | 211±1 | 219±7 | 271±2 | 273±3 | 5.9 ± 0.5 | 9.8 ± 0.4 |
Table 2 Tensile properties of the experimental Al-2.5 wt% Fe alloy specimens.
0.2% Proof stress / MPa | Tensile stress / MPa | Total elongation /% | ||||
---|---|---|---|---|---|---|
Deformation direction | Z | X/Y | Z | X/Y | Z | X/Y |
As-fabricated | 233±1 | 266±2 | 295±2 | 309±3 | 4.3 ± 0.5 | 8.8 ± 0.3 |
10 h | 243±4 | 246±5 | 299±3 | 308±1 | 4.8 ± 0.2 | 8.4 ± 0.1 |
100 h | 227±8 | 237±6 | 286±5 | 292±2 | 4.1 ± 0.1 | 7.5 ± 0.6 |
1000 h | 211±1 | 219±7 | 271±2 | 273±3 | 5.9 ± 0.5 | 9.8 ± 0.4 |
Fig. 12. Fracture surface morphologies of (a, b) as-fabricated specimen and the specimens exposed at 300 °C for (c, d) 100 h and (e, f) 1000 h, which were subjected to tensile deformation along (a, c, e) the Z direction and (b, d, f) the X/Y direction.
Fig. 13. (a) SEM micrographs depicting the distribution of coarsened Al-Fe phases in the α-Al matrix of the experimental Al-2.5 wt% Fe alloy sample exposed to 300 °C for 1000 h, (b) magnified view of the region enclosed by white dashed lines in (a), (c) corresponding orientation color map of the region shown in (b), and (d) the pinning effect of the nanosized Al13Fe4 phase on grain boundaries.
Fig. 14. Variation of (a) Fe concentration in the matrix and (b) lattice parameter of Al of experimental Al-2.5 wt% Fe alloy samples after thermal exposure at 300 °C for different periods.
Fig. 15. Variation of the lattice parameter as a function of Fe concentration in the present study compared with previously reported data for Al-Fe binary alloys.
Sample | $\sigma _{0.2}^{\text{exp}}\ $ (MPa) | ${{\sigma }^{\text{Orowan}}}\ $ (MPa) | ${{\sigma }^{\text{SSS}}}$(MPa) | ${{\sigma }^{\text{GBS}}}$(MPa) | $\sigma _{0.2}^{\text{theory}}$ (MPa) |
---|---|---|---|---|---|
As-fabricated | 250 | 106 | 115 | 15 | 236 |
10 h | 245 | 109 | 92 | 15 | 216 |
100 h | 232 | 98 | 85 | 15 | 198 |
1000 h | 215 | 44 | 68 | 14 | 126 |
Table 3 Summarized data on different strengthening contributions to 0.2% proof stress of the L-PBF produced Al-2.5 wt% Fe alloy.
Sample | $\sigma _{0.2}^{\text{exp}}\ $ (MPa) | ${{\sigma }^{\text{Orowan}}}\ $ (MPa) | ${{\sigma }^{\text{SSS}}}$(MPa) | ${{\sigma }^{\text{GBS}}}$(MPa) | $\sigma _{0.2}^{\text{theory}}$ (MPa) |
---|---|---|---|---|---|
As-fabricated | 250 | 106 | 115 | 15 | 236 |
10 h | 245 | 109 | 92 | 15 | 216 |
100 h | 232 | 98 | 85 | 15 | 198 |
1000 h | 215 | 44 | 68 | 14 | 126 |
[1] |
C.M. Allen, K.A.Q. O’Reilly, B. Cantor, P.V. Evans, Prog. Mater. Sci. 43 (1998) 89-170.
DOI URL |
[2] |
P.J. Black, Acta Cryst. 8 (1955) 175-182.
DOI URL |
[3] |
K. Han, I. Ohnuma, R. Kainuma, J. Alloy. Compd. 668 (2016) 97-106.
DOI URL |
[4] |
T. Tsukahara, N. Takata, S. Kobayashi, M. Takeyama, Tetsu-To-Hagané 102 (2016) 89-95.
DOI URL |
[5] |
Y.H. Liang, Z.M. Shi, G.W. Li, R.Y. Zhang, G. Zhao, J. Alloy. Compd. 781 (2019) 235-244.
DOI |
[6] |
T.T. Sasaki, T. Ohkubo, K. Hono, Acta Mater. 57 (2009) 3529-3538.
DOI URL |
[7] |
T. Dorin, N. Stanford, N. Birbilis, R.K. Gupta, Corros. Sci. 100 (2015) 396-403.
DOI URL |
[8] |
S.S. Nayak, H.J. Chang, D.H. Kim, S.K. Pabi, B.S. Murty, Mater. Sci. Eng. A 528 (2011) 5967-5973.
DOI URL |
[9] | A. Duchaussoy, X. Sauvage, K. Edalati, Z. Horita, G. Renou, A. Deschamps, F. D. Geuser, Acta Mater. 167 (2019) 89-102. |
[10] |
J.L. Zhang, B. Song, Q.S. Wei, D. Bourell, Y.S. Shi, J. Mater. Sci. Technol. 35 (2019) 270-284.
DOI URL |
[11] |
N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, M. Kobashi, Mater. Sci. Eng. A 704 (2017) 218-228.
DOI URL |
[12] | W. Stopyra, K. Gruber, I. Smolina, T. Kurzynowski, B. Kuźnicka, Addit.Manuf. 35 (2020) 101270. |
[13] |
W.Y. Wang, A.S. Takata, M. Kobashi, M. Kato, Intermetallics 125 (2020) 106892.
DOI URL |
[14] | X. Qi, Takata N, A. Suzuki, M. Kobashi, M. Kato, Addit. Manuf. 35 (2020) 101308. |
[15] |
L. Zhou, H. Hyer, S. Park, H. Pan, Y.L. Bai, K.P. Rice, Y. Sohn, Addit. Manuf. 28 (2019) 485-496.
DOI |
[16] |
Á. Griger, V. Stefániay, J. Mater. Sci. 31 (1996) 6645-6652.
DOI URL |
[17] | X. Qi, Takata N, A. Suzuki, M. Kobashi, M. Kato, Mater. Sci. Eng. A (2020) 140591. |
[18] | A. Kawahara, A. Niikura, T. Doko, Furukawa Rev. 24 (2003) 81-87. |
[19] |
A. Tonejc, Met. Trans. 2 (1971) 437-440.
DOI URL |
[20] | F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenom-ena, second ed., Elsevier, 2004. |
[21] | R.T. DeHoff,, F.N. Rhines (Eds.), Quantitative Microscopy, McGraw-Hill, New York, 1968. |
[22] |
L.K. Walford, Acta Cryst. 18 (1965) 287-291.
DOI URL |
[23] |
R.G. X.Wang, R.D.K. Misra, Y. Wang, H.C. Li, Y.Q. Shang, Mater. Sci. Eng. A 724 (2018) 452-460.
DOI URL |
[24] |
M.C.J. Marker, B. Skolyszewska-Kühberger, H.S. Effenberger, C. Schmetterer, K.W. Richter, Intermetallics 19 (2011) 1919-1929.
DOI URL |
[25] |
E. Vandersluis, A. Lombardi, C. Ravindran, A. Bois-Brochu, F. Chiesa, R. MacKay, Mater. Sci. Eng. A 648 (2015) 401-411.
DOI URL |
[26] | R. Rashid, S.H. Masood, D. Ruan, S. Palanisamy, R.A. Rahman Rashid, J. Elam-basseril, M. Brandt, Addit. Manuf. 22 (2018) 426-439. |
[27] |
M.L. Liu, T. Wada, A. Suzuki, N. Takata, M. Kobashi, M. Kato, Crystals 10 (11)(2020) 1007.
DOI URL |
[28] |
I. Rosenthal, A. Stern, N. Frage, Mater. Sci. Eng. A 682 (2017) 509-517.
DOI URL |
[29] | Y. Zhao, Y. Koizumi, K. Aoyagi, D. Wei, K. Yamanaka, A. Chiba, Addit. Manuf. 26 (2019) 202-214. |
[30] |
N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, N. Carlson, S.S. Babu, Acta Mater. 112 (2016) 303-314.
DOI URL |
[31] | D.A. Porter, K.E. Easterling, Phase Transformation in Metals and Alloys, third ed., CRC Press, 2009. |
[32] | P. Skjerpe, Acta Cryst. B44 (1988) 480-486. |
[33] |
S. Bahl, L.H. Xiong, L.F. Allard, R.A. Michi, J.D. Poplawsky, A.C. Chuang, D. Singh, T.R. Watkins, D. Shin, J.A. Haynes, A. Shyam, Mater. Des. 198 (2021) 109378.
DOI URL |
[34] |
M. Kajihara, Mater. Trans. 47 (2006) 1480-1484.
DOI URL |
[35] |
H. Kosuge, H. Takada, J. Jpn Inst. Light Met. 29 (1979) 64-69.
DOI URL |
[36] | K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Löber, Z. Wang, A.K. Chaubey, U. Kühn, J. Eckert. Mater. Sci. Eng. A 590 (2014) 153-160. |
[37] |
X.L. Li, A. Scherf, M. Heilmaier, F. Stein, J. Phase Equilib. Diffus. 37 (2016) 162-173.
DOI URL |
[38] | E.T. Teatum, K.A. Gschneidner Jr., J.T. Waber, LA-2345, U.S. Department of Com- merce, Washington, D. C., 1968. |
[39] |
K.G. Prashanth, S. Scudino, J. Eckert, Technologies 4 (2016) 38.
DOI URL |
[40] | S. Nasu, U. Gonser, P.H. Shingu, Y. Murakami, J. Phys. F 4 (1974) L24-L28. |
[41] | G. Falkenhagen, W. Hofmann, Z. Metallkd. 43 (1952) 69-81. |
[42] | A. Tonejc, A. Bonefăcić, J. Appl. Phys. 40 (1969) 419-420. |
[43] | E. Blank, Z. Metallkd. 63 (1972) 315-323. |
[44] |
H. Jones, Scr. Metall. 17 (1983) 97-100.
DOI URL |
[45] | N. Oshiro, M. Takemoto, H. Watanabe, S. Mitajiri, K. Kawai, Patent (2014) WO 2014/033791 A1. |
[46] |
Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang, J. Mater. Sci. Technol. 62 (2021) 162-172.
DOI |
[47] |
X.C. Tong, A.K. Ghosh, J. Mater. Sci. 36 (2001) 4059-4069.
DOI URL |
[48] |
W.H. Yu, S.L. Sing, C.K. Chua, C.N. Kuo, X.L. Tian, Prog. Mater. Sci. 104 (2019) 330-379.
DOI |
[49] | N. Hansen, Metall. Trans. A 16A (1985) 2167-2190. |
[50] |
G.L. Shuai, Z. Li, D.T. Zhang, Y.X. Tong, L. Li, Vacuum 183 (2021) 109813.
DOI URL |
[51] | T. Uesugi, K. Higashi, Comput. Mater. Sci. 67 (2013) 1-10. |
[1] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[2] | Jingjing Pan, Jingyang Wang. Temperature-mediated supramolecular assemblies give rise to hierarchical boron nitride nano-ribbon networks with different micro-topology [J]. J. Mater. Sci. Technol., 2022, 96(0): 160-166. |
[3] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
[4] | Luqing Cui, Cheng-Han Yu, Shuang Jiang, Xiaoyu Sun, Ru Lin Peng, Jan-Erik Lundgren, Johan Moverare. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X [J]. J. Mater. Sci. Technol., 2022, 96(0): 295-307. |
[5] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[6] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[7] | H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang. Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens [J]. J. Mater. Sci. Technol., 2022, 97(0): 239-253. |
[8] | Young-Kyun Kim, Min-Chul Kim, Kee-Ahn Lee. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 97(0): 10-19. |
[9] | Cecilie V. Funch, Alessandro Palmas, Kinga Somlo, Emilie H. Valente, Xiaowei Cheng, Konstantinos Poulios, Matteo Villa, Marcel A.J. Somers, Thomas L. Christiansen. Targeted heat treatment of additively manufactured Ti-6Al-4V for controlled formation of Bi-lamellar microstructures [J]. J. Mater. Sci. Technol., 2021, 81(0): 67-76. |
[10] | Chendong Zhao, Jinshan Li, Yudong Liu, Xiao Ma, Yujie Jin, William Yi Wang, Hongchao Kou, Jun Wang. Optimizing mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via FCC to BCC phase transformation [J]. J. Mater. Sci. Technol., 2021, 86(0): 117-126. |
[11] | Yan Ma, Muxin Yang, Fuping Yuan, Xiaolei Wu. Deformation induced hcp nano-lamella and its size effect on the strengthening in a CoCrNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 82(0): 122-134. |
[12] | Zhufeng He, Nan Jia, Hongwei Wang, Haile Yan, Yongfeng Shen. Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature [J]. J. Mater. Sci. Technol., 2021, 86(0): 158-170. |
[13] | Shaodong Hu, Long Hou, Kang Wang, Zhongmiao Liao, Wen Zhu, Aihua Yi, Wenfang Li, Yves Fautrelle, Xi Li. Effect of transverse static magnetic field on radial microstructure of hypereutectic aluminum alloy during directional solidification [J]. J. Mater. Sci. Technol., 2021, 76(0): 207-214. |
[14] | Yubao Xiao, Tie Liu, Yuxin Tong, Meng Dong, Jinshan Li, Jun Wang, Qiang Wang. Microstructure evolution of peritectic Al-18 at.% Ni alloy directionally solidified in high magnetic fields [J]. J. Mater. Sci. Technol., 2021, 76(0): 51-59. |
[15] | Mengdan Hu, Taotao Wang, Hui Fang, Mingfang Zhu. Modeling of gas porosity and microstructure formation during dendritic and eutectic solidification of ternary Al-Si-Mg alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 76-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||