J. Mater. Sci. Technol. ›› 2021, Vol. 86: 117-126.DOI: 10.1016/j.jmst.2020.12.080
• Research Article • Previous Articles Next Articles
Chendong Zhaoa, Jinshan Lia,*(), Yudong Liua, Xiao Mab, Yujie Jinb, William Yi Wanga,*(
), Hongchao Koua, Jun Wanga,c,*(
)
Received:
2020-12-03
Accepted:
2020-12-28
Published:
2021-09-30
Online:
2021-09-24
Contact:
Jinshan Li,William Yi Wang,Jun Wang
About author:
nwpuwj@nwpu.edu.cn, nwpuwj@126.com (J. Wang).Chendong Zhao, Jinshan Li, Yudong Liu, Xiao Ma, Yujie Jin, William Yi Wang, Hongchao Kou, Jun Wang. Optimizing mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via FCC to BCC phase transformation[J]. J. Mater. Sci. Technol., 2021, 86: 117-126.
Fig. 1. Back-scattered electron image illustrating (a) the microstructures of as-cast AlCoCrFeNi HEA. (b) and (c) are the ID and DC region at higher magnification, respectively. (d) EBSD phase map shows the distribution of FCC, BCC and σ phases in the ID region.
Fig. 3. Back-scattered electron image (a-e) and EBSD phase maps (a1-e1) illustrating the microstructures and phase distributions of AlCoCrFeNi HEA under different heat treatment conditions: (a, a1) 1000 °C - 10 h, (b, b1) 1100 °C - 10 h, (c, c1) 1200 °C - 10 h, (d, d1) 1100 °C - 50 h, (e, e1) 1200 °C - 50 h. The green and red colour in EBSD phase maps denote FCC and BCC phases, respectively.
Fig. 4. Back-scattered electron image illustrating the microstructures of AlCoCrFeNi HEA at high magnification under different heat treatment conditions: (a) 1100 °C - 10 h, (b) 1200 °C - 10 h, (c) 1100 °C - 50 h, (d) 1200 °C - 50 h.
Fig. 5. EBSD analyses of AlCoCrFeNi HEA heat-treated at 1200 °C for 10 h. (a) macro EBSD phase map and (b) its corresponding SEM image. The magnification SEM image of (c): region Ⅰ in (b) and (d): region Ⅱ in (b), the inset shows their corresponding EBSD phase maps.
Fig. 6. (a) Back-scattered electron image of DC region at microscale of the AlCoCrFeNi HEA heat-treated at 1200 °C for 10 h. The TEM lamella (marked by the red dotted line) was then lifted out by a manipulator and thinned to become electron-transparent shown in (b).
Fig. 7. (a) HADDF-STEM image and EDS mappings of the TEM lamella. (b) HADDF-STEM image of region Ⅰ (marked as the orange square in (a)), the inset in the HADDF image shows the SADP along [011] zone axis in FCC phase.
Region | Al/% | Co/% | Cr/% | Fe/% | Ni/% |
---|---|---|---|---|---|
FCC | 7.45 | 24.08 | 25.50 | 25.91 | 17.06 |
BCC-1 | 2.38 | 20.98 | 41.79 | 28.98 | 5.87 |
BCC-2 | 2.49 | 20.91 | 40.43 | 29.65 | 6.52 |
Table 1 Compositions of the FCC and BCC phases (except B2 phases) in atomic percent from TEM at 1200 °C-10 h condition.
Region | Al/% | Co/% | Cr/% | Fe/% | Ni/% |
---|---|---|---|---|---|
FCC | 7.45 | 24.08 | 25.50 | 25.91 | 17.06 |
BCC-1 | 2.38 | 20.98 | 41.79 | 28.98 | 5.87 |
BCC-2 | 2.49 | 20.91 | 40.43 | 29.65 | 6.52 |
Fig. 8. (a) Micro-diffraction pattern from [001]BCC ZA. (b) Micro-diffraction pattern from [001]B2 ZA. (c) Dark field image made from the {110} superlattice spot highlighted by the yellow circle in (b) showing the lighted-up B2 precipitates in region Ⅱ (marked by the red square in Fig. 7(a)).
Alloy state | Compressive yield strength (MPa) | Ultimate compressive strength (MPa) | Fracture strain (%) | Magnetization at 2 T and 298 K (emu/g) |
---|---|---|---|---|
1000 °C-10h | 910 ± 13 | 3015 ± 25 | 38 ± 2 | 19.64 |
1100 °C-10h | 931 ± 5 | 2940 ± 53 | 37 ± 1 | 29.42 |
1100 °C-50 h | 977 ± 13 | 2982 ± 62 | 36 ± 2 | 34.24 |
1200 °C-10h | 1148 ± 21 | 2606 ± 24 | 28 ± 2 | 48.56 |
1200 °C-50 h | 1203 ± 21 | 2400 ± 45 | 22 ± 1 | 51.28 |
Table 2 Mechanical and magnetic properties of AlCoCrFeNi HEA at the as-cast state and different heat treatment conditions.
Alloy state | Compressive yield strength (MPa) | Ultimate compressive strength (MPa) | Fracture strain (%) | Magnetization at 2 T and 298 K (emu/g) |
---|---|---|---|---|
1000 °C-10h | 910 ± 13 | 3015 ± 25 | 38 ± 2 | 19.64 |
1100 °C-10h | 931 ± 5 | 2940 ± 53 | 37 ± 1 | 29.42 |
1100 °C-50 h | 977 ± 13 | 2982 ± 62 | 36 ± 2 | 34.24 |
1200 °C-10h | 1148 ± 21 | 2606 ± 24 | 28 ± 2 | 48.56 |
1200 °C-50 h | 1203 ± 21 | 2400 ± 45 | 22 ± 1 | 51.28 |
Fig. 10. AFM height images (measured at 298 K) of the AlCoCrFeNi HEA heat-treated at 1200 °C for 10 h: (a) ID region. (b) DC region. The corresponding phase images (magnetic domains) of the ID region and DC region are shown in (c) and (d), respectively.
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6(2004) 299-303.
DOI URL |
[2] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375 (2004) 213-218. |
[3] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4(2019) 515-534.
DOI |
[4] | M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang, Springer, 2016. |
[5] |
Z. Li, S. Zhao, R.O. Ritchie, M.A. Meyers, Prog. Mater. Sci. 102(2019) 296-345.
DOI URL |
[6] |
T. Yang, Y.L. Zhao, W.P. Li, C.Y. Yu, J.H. Luan, D.Y. Lin, L. Fan, Z.B. Jiao, W.H. Liu, X.J. Liu, J.J. Kai, J.C. Huang, C.T. Liu, Science 369 (2020) 427-432.
DOI PMID |
[7] |
Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T. Nieh, Z. Lu, Nature 563 (2018) 546-550.
DOI URL |
[8] |
T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, C.T. Liu, Science 362 (2018) 933-937.
DOI PMID |
[9] |
F. Otto, A. Dlouh´y, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61(2013) 5743-5755.
DOI URL |
[10] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
[11] |
Z. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nat. Commun. 6(2015) 10143.
DOI URL |
[12] |
M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Acta Mater. 59(2011) 6308-6317.
DOI URL |
[13] | L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang, J.W. Qiao, J. Mater. Sci 42(2020) 85-96. |
[14] |
Y.L. Zhao, T. Yang, Y.R. Li, L. Fan, B. Han, Z.B. Jiao, D. Chen, C.T. Liu, J.J. Kai, Acta Mater. 188(2020) 517-527.
DOI URL |
[15] | S.K. Varma, F. Sanchez, S. Moncayo, C.V. Ramana, J. Mater. Sci 38(2020) 189-196. |
[16] |
O.N. Senkov, S.V. Senkova, C. Woodward, D.B. Miracle, Acta Mater. 61(2013) 1545-1557.
DOI URL |
[17] |
O.N. Senkov, J.K. Jensen, A.L. Pilcha, D.B. Miracle, H.L. Fraser, Mater. Des. 139(2018) 498-511.
DOI URL |
[18] |
Y. Zhang, T. Zuo, Y. Cheng, P.K. Liaw, Sci. Rep. 3(2013) 1455.
DOI PMID |
[19] |
P. Koželj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jagličić, S. Maiti, M. Feuerbacher, W. Steurer, J. Dolinšek, Phys. Rev. Lett. 113(2014), 107001.
PMID |
[20] |
Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016)227-230.
DOI URL |
[21] | H. Yang, J. Li, X. Pan, W.Y. Wang, H. Kou, J. Wang, J. Mater. Sci. Technol.(2020). |
[22] |
R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie, A.M. Minor, Nature 581 (2020) 283-287.
DOI URL |
[23] |
Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Nature 574 (2019) 223-227.
DOI URL |
[24] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122(2017) 448-511.
DOI URL |
[25] |
D. Choudhuri, S.G. Srinivasan, R.S. Mishra, Int. J. Plast. 125(2020) 191-209.
DOI URL |
[26] |
S. Dasari, A. Jagetia, Y.J. Chang, V. Soni, B. Gwalani, S. Gorsse, A.C. Yeh, R. Banerjee. J. Alloys Compd 830(2020), 154707.
DOI URL |
[27] |
Z. Li, L. Fu, J. Peng, H. Zheng, X. Ji, Y. Sun, S. Ma, A. Shan, Mater. Charact. 159(2020), 109989.
DOI URL |
[28] |
T.T. Zuo, M.C. Gao, L. Ouyang, X. Yang, Y. Cheng, R. Feng, S. Chen, P.K. Liaw, J.A. Hawk, Y. Zhang, Acta Mater. 130(2017) 10-18.
DOI URL |
[29] |
K. Raghavendra, B.S. Murty, V. Srinivas, J. Alloys Compd. 746(2018) 194-199.
DOI URL |
[30] | C. Liu, W. Peng, C.S. Jiang, H. Guo, J. Tao, X. Deng, Z. Chen, J. Mater. Sci 35(2019) 1175-1183. |
[31] |
Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, T. Li, Sci. Rep. 4(2014) 6200.
DOI URL |
[32] |
Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater. 124(2017) 143-150.
DOI URL |
[33] |
W.R. Wang, W. Wang, J.W. Yeh, J. Alloys Comp. 589(2014) 143-152.
DOI URL |
[34] |
S.W. Wu, G. Wang, Q. Wang, Y.D. Jia, J. Yi, Q.J. Zhai, J.B. Liu, B.A. Sun, H.J. Chu, J. Shen, P.K. Liaw, C.T. Liu, T.Y. Zhang, Acta Mater. 165(2019) 444-458.
DOI |
[35] |
B. Gwalani, S. Gorsse, D. Choudhuri, M. Styles, Y. Zheng, R.S. Mishra, R. Banerjee, Acta Mater. 153(2018) 169-185.
DOI URL |
[36] |
B. Gwalani, S. Gorsse, D. Choudhuri, Y. Zheng, R.S. Mishra, R. Banerjee, Scr. Mater. 162(2019) 18-23.
DOI URL |
[37] |
D. Choudhuri, B. Gwalani, S. Gorsse, M. Komarasamy, S.A. Mantri, S.G. Srinivasan, R.S. Mishra, R. Banerjee, Acta Mater. 165(2019) 420-430.
DOI |
[38] |
B. Gwalani, V. Soni, M. Lee, S. Mantri, Y. Ren, R. Banerjee, Mater. Des. 121(2017) 254-260.
DOI URL |
[39] | H. Yang, J. Li, X. Pan, W.Y. Wang, H. Kou, J. Wang, J. Mater. Sci 72(2021) 1-7. |
[40] |
A. Asabre, A. Kostka, O. Stryzhyboroda, J. Pfetzing-Micklich, U. Hecht, G. Laplanche, Mater. Des. 184(2019), 108201.
DOI URL |
[41] |
Y.F. Kao, S.K. Chen, T.J. Chen, P.C. Cho, J.W. Yeh, S.J. Lin, J. Alloys Compd. 509(2011) 1607-1614.
DOI URL |
[42] |
A. Munitz, S. Salhov, S. Hayun, N. Frage, J. Alloys Compd. 683(2016) 221-230.
DOI URL |
[43] |
K.R. Lim, K.S. Lee, J.S. Lee, J.Y. Kim, H.J. Chang, Y.S. Na, J. Alloys Compd. 728 (2017) 1235- 1238.125.
DOI URL |
[44] | C. Zhao, J. Li, Y. Liu, W.Y. Wang, H. Kou, E. Beaugnon, J. Wang, J. Mater. Sci 73(2021) 83-90. |
[45] |
Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G.Y. Wang, G.F. Zhao, F.Q. Yang, P.K. Liaw, Mater. Sci. Eng. A 647 (2015)229-240.
DOI URL |
[46] |
D. Karlsson, G. Lindwall, A. Lundbäck, M. Amnebrink, M. Boström, L. Riekehr, M. Schuisky, M. Sahlberg, U. Jansson, Addit. Manuf. 27(2019) 72-79.
DOI |
[47] |
J.C. Rao, H.Y. Diao, V. Ocelík, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw, J.Th.M. De Hosson, Acta Mater. 131(2017) 206-220.
DOI URL |
[1] | Haoxue Yang, Jinshan Li, Xiangyu Pan, William Yi Wang, Hongchao Kou, Jun Wang. Nanophase precipitation and strengthening in a dual-phase Al0.5CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 1-7. |
[2] | X.W. Liu, N. Gao, J. Zheng, Y. Wu, Y.Y. Zhao, Q. Chen, W. Zhou, S.Z. Pu, W.M. Jiang, Z.T. Fan. Improving high-temperature mechanical properties of cast CrFeCoNi high-entropy alloy by highly thermostable in-situ precipitated carbides [J]. J. Mater. Sci. Technol., 2021, 72(0): 29-38. |
[3] | Pan Xie, Shucheng Shen, Cuilan Wu, Jianghua Chen. Abnormal orientation relation between fcc and hcp structures revealed in a deformed high manganese steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 156-161. |
[4] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
[5] | Lu Yang, Zhuo Cheng, Weiwei Zhu, Cancan Zhao, Fuzeng Ren. Significant reduction in friction and wear of a high-entropy alloy via the formation of self-organized nanolayered structure [J]. J. Mater. Sci. Technol., 2021, 73(0): 1-8. |
[6] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[7] | Raymond Kwesi Nutor, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang. Tunability of the mechanical properties of (Fe50Mn27Ni10Cr13)100-xMox high-entropy alloys via secondary phase control [J]. J. Mater. Sci. Technol., 2021, 73(0): 210-217. |
[8] | Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 83-90. |
[9] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
[10] | Kun Wang, Xian Tong, Jixing Lin, Aiping Wei, Yuncang Li, Matthew Dargusch, Cuie Wen. Binary Zn-Ti alloys for orthopedic applications: Corrosion and degradation behaviors, friction and wear performance, and cytotoxicity [J]. J. Mater. Sci. Technol., 2021, 74(0): 216-229. |
[11] | Yuan Wu, Fei Zhang, Xiaoyuan Yuan, Hailong Huang, Xiaocan Wen, Yihan Wang, Mengyuan Zhang, Honghui Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, Zhaoping Lu. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 214-220. |
[12] | S.J. Wu, Z.Q. Liu, R.T. Qu, Z.F. Zhang. Designing metallic glasses with optimal combinations of glass-forming ability and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 67(0): 254-264. |
[13] | Zibing An, Shengcheng Mao, Yinong Liu, Li Wang, Hao Zhou, Bin Gan, Ze Zhang, Xiaodong Han. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion [J]. J. Mater. Sci. Technol., 2021, 79(0): 109-117. |
[14] | Ziyan Zhao, Juan Mu, Haifeng Zhang, Yandong Wang, Yang Ren. Oxygen addition for improving the strength and plasticity of TiZr-based amorphous alloy composites [J]. J. Mater. Sci. Technol., 2021, 79(0): 212-221. |
[15] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||