J. Mater. Sci. Technol. ›› 2021, Vol. 86: 127-138.DOI: 10.1016/j.jmst.2021.01.041
• Research Article • Previous Articles Next Articles
Sateesh Bandarua,*(), Narashima Murthyb, Ravindra Kulkarnic, Niall J. Englisha,*(
)
Received:
2020-12-28
Accepted:
2021-01-16
Published:
2021-09-30
Online:
2021-09-24
Contact:
Sateesh Bandaru,Niall J. English
About author:
niall.english@ucd.ie (N.J. English).Sateesh Bandaru, Narashima Murthy, Ravindra Kulkarni, Niall J. English. Magnetic ferrite/carbonized cotton fiber composites for improving electromagnetic absorption properties at gigahertz frequencies[J]. J. Mater. Sci. Technol., 2021, 86: 127-138.
Materials | RLmin | Bandwidth | Thickness | Filler content | Ref. |
---|---|---|---|---|---|
PBPC (wood) | -16.1 | 7.63 | 3.73 | 50 | [ |
PC (walnut shell) | -19.4 | 2.24 | 1.5 | 30 | [ |
MPC (loofah) | -49.6 | 5 | 2 | 30 | [ |
HPMC (rice) | -30.5 | 5 | 1.62 | 15 | [ |
Ni/CF | -43 | 4.9 | 2 | 33 | [ |
Co@NPC | -51.2 | 1.65 | 4.4 | 25 | [ |
CNT@Co@C | -53.5 | 2 | 8.02 | 10 | [ |
Fe@NPC@CF | -46.2 | 2.5 | 5.2 | 25 | [ |
NiFe2O4@CF | -55.8 | 4 | 3.2 | 25 | [ |
CCFs-Fe3O4 | -56.8 | 7.1 | 1.67 | 30 | Our |
Table 1 Microwave absorption performance of CCFs-Fe3O4 composites compared with other reported bio-derived composites.
Materials | RLmin | Bandwidth | Thickness | Filler content | Ref. |
---|---|---|---|---|---|
PBPC (wood) | -16.1 | 7.63 | 3.73 | 50 | [ |
PC (walnut shell) | -19.4 | 2.24 | 1.5 | 30 | [ |
MPC (loofah) | -49.6 | 5 | 2 | 30 | [ |
HPMC (rice) | -30.5 | 5 | 1.62 | 15 | [ |
Ni/CF | -43 | 4.9 | 2 | 33 | [ |
Co@NPC | -51.2 | 1.65 | 4.4 | 25 | [ |
CNT@Co@C | -53.5 | 2 | 8.02 | 10 | [ |
Fe@NPC@CF | -46.2 | 2.5 | 5.2 | 25 | [ |
NiFe2O4@CF | -55.8 | 4 | 3.2 | 25 | [ |
CCFs-Fe3O4 | -56.8 | 7.1 | 1.67 | 30 | Our |
Fig. 2. Microstructures of CCFs-Fe3O4 composites. (a)-(d) SEM images of 70080, 700120, 80080, and 800120 samples, (e), (f) The corresponding high-resolution images, (i)-(l) The corresponding elemental C, O, and Fe mapping.
Fig. 4. XPS characterizations of CCFs-Fe3O4 composite. (a) Survey spectra, (b) C1s spectra, (c) N1s spectra, (d) O1s spectra, (e) Fe2p spectra, and (f) the elemental content of different samples.
Fig. 6. Scattering parameters of CCFs-Fe3O4 composite. (a) Reflection coefficient (S11), (b) Transmission coefficient (S21), (c) Absorption coefficient (A).
Fig. 7. Electromagnetic parameters of CCFs-Fe3O4 composite. (a)-(b) Complex permittivity, (c) dielectric loss tangent, (d)-(e) complex permeability, (f) magnetic loss tangent.
Fig. 9. Microwave absorption performances of CCF-Fe3O4 composites. (a)-(d) the three-dimensional reflection loss mapping; (e)-(h) the corresponding contour plots; (i)-(l) microwave absorbing properties; (m)-(p) the plots of absorption bandwidth and minimum RL values. The thicknesses are ranging from 0 to 5?mm with an interval of 0.01?mm.
Fig. 11. Schematic of the microwave absorbing mechanism of CCFs-Fe3O4 composites, including multi-polarization behavior, such as interfacial polarization and electric-dipole polarization.
[1] |
J. Guo, J.R. Morris, Y. Ihm, C.I. Contescu, N.C. Gallego, G. Duscher, S.J. Pennycook, M.F. Chisholm, Small 8 (2012) 3283-3288.
DOI URL |
[2] |
Y. Cheng, J.Z.Y. Seow, H.Q. Zhao, Z.C. Xu, G.B. Ji, Nano-Micro Lett. 12(2020) 125.
DOI PMID |
[3] |
X.H. Liang, Z.M. Man, B. Quan, J. Zheng, W.H. Gu, Z. Zhang, G.B. Ji, Nano-Micro Lett. 12(2020) 102.
DOI URL |
[4] |
C. Han, M. Zhang, W.Q. Cao, M.S. Cao, Carbon 171 (2021) 953-962.
DOI URL |
[5] |
P. Singh, V.K. Babbar, A. Razdan, R.K. Puri, T.C. Goel, J. Appl. Phys. 87(2000) 4362-4366.
DOI URL |
[6] |
S.B. Yi, G.H. Bai, X.Y. Wang, X.F. Zhang, A. Hussain, J.Y. Jin, M. Yan, Ceram. Int. 46(2020) 8935-8941.
DOI URL |
[7] |
A. Hussain, G.H. Bai, H.X. Huo, S.B. Yi, X.Y. Wang, X.Y. Fan, M. Yan, Ceram. Interfaces 45 (2019) 12544-12549.
DOI URL |
[8] |
M. Yan, J. Hu, W. Luo, W.Y. Zhang, J. Magn. Magn 303(2006) 249-255.
DOI URL |
[9] | A. Hussain, A. Naeem, G.H. Bai, M. Yan, J. Mater. Sci 29(2018) 20783-20789. |
[10] |
N. Yang, J. Zeng, J. Xue, L. Zeng, Y. Zhao, J. Alloys Compd. 735(2018) 2212-2218.
DOI URL |
[11] |
D. Liu, R. Qiang, Y. Du, Y. Wang, C. Tian, X. Han, J. Colloid Interfaces Sci. 514(2018) 10-20.
DOI URL |
[12] |
T. Wu, Y. Liu, X. Zeng, T. Cui, Y. Zhao, Y. Li, G. Tong, ACS Appl. Mater. Interfaces 8 (2016) 7370-7380.
DOI URL |
[13] |
X. Zhang, Y. Li, R. Liu, Y. Rao, H. Rong, G. Qin, ACS Appl. Mater. Interfaces 8 (2016) 3494-3498.
DOI URL |
[14] | X. Tian, F. Meng, F. Meng, X. Chen, Y. Guo, Y. Wang, W. Zhu, Z. Zhou, ACS Appl.Mater. Interfaces 9 (2017) 15711-15718. |
[15] |
Y. Li, T. Gao, W. Zhang, H. Hu, H. Rong, X. Zhang, ACS Appl. Nano Mater. 2(2019) 3648-3653.
DOI URL |
[16] |
Y. Yin, X. Liu, X. Wei, Y. Li, X. Nie, R. Yu, J. Shui, ACS Appl. Mater. Interfaces 9(2017) 30850-30861.
DOI URL |
[17] |
D. Liu, Y. Du, P. Xu, N. Liu, Y. Wang, H. Zhao, L. Cui, X. Han, J. Mater. Chem. C 7 (2019) 5037-5046.
DOI URL |
[18] |
X. Zhang, J. Guo, P. Guan, G. Qin, S.J. Pennycook, Phys. Rev. Lett. 115(2015) 147601.
DOI URL |
[19] |
Y. Li, X. Liu, R. Liu, X. Pang, Y. Zhang, G. Qin, X. Zhang, Carbon 139 (2018) 181-188.
DOI URL |
[20] |
Z. Xu, Y. Du, D. Liu, Y. Wang, W. Ma, Y. Wang, P. Xu, X. Han, ACS Appl. Mater. Interfaces 11 (2019) 4268-4277.
DOI URL |
[21] |
Y. Li, X. Chen, Q. Wei, W. Liu, Y. Zhang, G. Qin, Z. Shi, X. Zhang, Sci. Bull. 65(2020) 623-630.
DOI URL |
[22] |
Y. Li, Y. Zheng, R. Liu, Y. Rao, R. Su, J. Yu, X. Liu, P. Guan, J. Guo, X. Zhang, J. Appl. Phys. 127(2020) 195107.
DOI URL |
[23] |
Y. Li, R. Liu, X. Pang, X. Zhao, Y. Zhang, G. Qin, X. Zhang, Carbon 126 (2018) 372-381.
DOI URL |
[24] |
Z. Li, X. Ding, F. Li, X. Liu, S. Zhang, H. Long, J. Phys. D Appl. Phys. 50(2017) 445305.
DOI URL |
[25] | X.Y. Wang, Y.K. Lu, T. Zhu, S.C. Chang, W. Wang, Chem. Eng. J. 388(2020) 124327. |
[26] |
H.L. Xue, Q.Z. Jiao, L. Hao, X. Ni, Y.J. Wang, H.S. Li, Q. Wu, Y. Zhao, Micro Nano Lett. 12(2017) 227-230.
DOI URL |
[27] |
C. Luo, Y. Tang, T. Jiao, J. Kong, ACS Appl. Mater. Interfaces 10 (2018) 28051-28061.
DOI URL |
[28] | A. Nazir, H. Yu, L. Wang, M. Haroon, R.S. Ullah, S. Fahad, T. Elshaarani, A. Khan, M. U sman, J.Mater. Sci. 53(2018) 8699-8719. |
[29] |
X. Li, Y. Yang, J. Liu, L. Ouyang, J. Liu, R. Hu, L. Yang, M. Zhu, Appl. Surf. Sci. 413(2017) 169-174.
DOI URL |
[30] |
Y. Yuan, X. Sun, M. Yang, F. Xu, Z. Lin, X. Zhao, Y. Ding, J. Li, W. Yin, Q. Peng, ACS Appl. Mater. Interfaces 9 (2017) 21371-21381.
DOI URL |
[31] |
Z. Shen, J. Feng, ACS Sustain. Chem. Eng. 7(2019) 6259-6266.
DOI URL |
[32] |
Z. Li, H. Lin, S. Ding, H. Ling, T. Wang, Z. Miao, M. Zhang, A. Meng, Q. Li, Carbon 167 (2020) 148-159.
DOI URL |
[33] |
H.Q. Zhao, Y. Cheng, J.N. Ma, Y.N. Zhang, G.B. Ji, Y.W. Du, Chem. Eng. J. 339(2018) 432-441.
DOI URL |
[34] |
M.L. Yang, Y. Yuan, Y. Li, X.X. Sun, S.S. Wang, L. Liang, Y.H. Ning, J.J. Li, W.L. Yin, R.C. Che, Y.B. Li, Carbon 161 (2020) 517-527.
DOI URL |
[35] |
X. Li, E.B. Cui, Z. Xiang, L.Z. Yu, J. Xiong, F. Pan, W. Lu, J. Alloys Compd. 819(2020) 152952.
DOI URL |
[36] |
W.X. Li, H.X. Qi, F. Guo, X.J. Niu, Y.E. Du, Y.Q. Chen, RSC Adv. 9(2019) 29959-29966.
DOI URL |
[37] |
M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Nano Lett. 10(2010) 751-758.
DOI PMID |
[38] |
A.C. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, Phys. Rev. Lett. 97(2006) 187401.
PMID |
[39] |
L. Canc¸ ado, K. Takai, T. Enoki, M. Endo, Y. Kim, H. Misusaki, A. Jorio, L. Coelho, R. Magalhaes-Paniago, M. Pimenta, Appl. Phys. Lett. 88 (2006) 163106.
DOI URL |
[40] |
A.C. Ferrari, D.M. Basko, Nat. Nanotechnol. 8 (2013) 235-246.
DOI PMID |
[41] |
M. Bruna, A.K. Ott, M. Ij¨as, D. Yoon, U. Sassi, A.C. Ferrari, ACS Nano 8 (2014) 7432-7441.
DOI URL |
[42] |
S.A. Chernyak, A.S. Ivanov, K.I. Maslakov, A.V. Egorov, Z. Shen, S.S. Savilov, V.V. Lunin, Phys. Chem. Chem. Phys. 19(2017) 2276-2285.
DOI PMID |
[43] |
S. Claramunt, A. Varea, D. López-Díaz, M.M. Velázquez, A. Cornet, A. Cirera, J. Phys. Chem. C 119 (2015) 10123-10129.
DOI URL |
[44] |
S. Eigler, C. Dotzer, A. Hirsch, Carbon 50 (2012) 3666-3673.
DOI URL |
[45] |
B. Kariminejad, M. Salami-Kalajahi, H. Roghani-Mamaqani, A. Noparvar-Qarebagh, Polym. Compos. 38(2017) E515-E524.
DOI URL |
[46] |
Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J.M. Tour, Nature 468 (2010) 549-552.
DOI URL |
[47] |
S. Vinod, C.S. Tiwary, L.D. Machado, S. Ozden, R. Vajtai, D.S. Galvao, P.M. Ajayan, Nanoscale 8 (2016) 15857-15863.
DOI URL |
[48] |
D. Voiry, J. Yang, J. Kupferberg, R. Fullon, C. Lee, H.Y. Jeong, H.S. Shin, M. Chhowalla, Science 353 (2016) 1413-1416.
DOI URL |
[49] |
Z. Zafar, Z.H. Ni, X. Wu, Z.X. Shi, H.Y. Nan, J. Bai, L.T. Sun, Carbon 61 (2013) 57-62.
DOI URL |
[50] |
C. Brosseau, W. NDong, A. Mdarhri, J. Appl. Phys. 104(2008) 074907.
DOI URL |
[51] |
R. Lv, F. Kang, J. Gu, X. Gui, J. Wei, K. Wang, D. Wu, Appl. Phys. Lett. 93(2008), 223105.
DOI URL |
[52] |
W. Liu, S. Tan, Z.D. Yang, G.B. Ji, ACS Appl. Mater. Interfaces 10 (2018)31610-31622.
DOI URL |
[53] |
G.Z. Wang, Z. Gao, S.W. Tang, C.Q. Chen, F.F. Duan, S.C. Zhao, S.W. Lin, Y.H. Feng, L. Zhou, Y. Qin, ACS Nano 6 (2012) 11009-11017.
DOI URL |
[54] |
H. Wang, Y.Y. Dai, W.J. Gong, D.Y. Geng, S. Ma, D. Li, W. Liu, Z.D. Zhang, Appl. Phys. Lett. 102(2013) 223113.
DOI URL |
[55] |
H. Wang, Y.Y. Dai, S. Geng, D.Y. Ma, D. Li, J. An, J. He, W. Liu, Z.D. Zhang, Nanoscale 7 (2015) 17312-17319.
DOI PMID |
[56] |
H.J. Yang, W.Q. Cao, D.Q. Zhang, T.J. Su, H.L. Shi, W.Z. Wang, J. Yuan, M.S. Cao, ACS Appl. Mater. Interfaces 7 (2015) 7073-7077.
DOI URL |
[57] |
H.J. Yang, J. Yuan, Y. Li, Z.L. Hou, H.B. Jin, X.Y. Fang, M.S. Cao, Solid State Commun. 163(2013) 1-6.
DOI URL |
[58] |
H.J. Yang, M.S. Cao, Y. Li, H.L. Shi, Z.L. Hou, X.Y. Fang, H.B. Jin, W.Z. Wang, J. Yuan, Adv. Opt. Mater. 2(2014) 214-219.
DOI URL |
[59] |
D. Ugarte, A. Chatelain, W.A. de Heer, Science 274 (1996) 1897-1899.
PMID |
[60] |
B. Shan, K. Cho, Phys. Rev. B 73 (2006) 081401.
DOI URL |
[61] |
M.S. Cao, J. Yang, W.L. Song, D.Q. Zhang, B. Wen, H.B. Jin, Z.L. Hou, J. Yuan, ACS Appl. Mater. Interfaces 4 (2012) 6949-6956.
DOI URL |
[62] |
Y. Li, J. Wang, R. Liu, X. Zhao, X. Wang, X. Zhang, G. Qin, J. Alloys Compd. 724(2017) 1023-1029.
DOI URL |
[63] |
J. Wang, Z. Wang, R. Liu, Y. Li, X. Zhao, X. Zhang, Mater. Lett. 209(2017)276-279.
DOI URL |
[64] |
Z. Wang, X. Liu, Y. Li, J. Wang, R. Liu, Y. Zhang, Z. Wang, J. Yu, W. Chen, Z. Shi, J. Zhang, X. Zhang, J. Alloys Compd. 767(2018) 1-6.
DOI URL |
[65] |
J. Xi, E. Zhou, Y. Liu, W. Gao, J. Ying, Z. Chen, C. Gao, Carbon 124 (2017) 492-498.
DOI URL |
[66] |
X. Qiu, L. Wang, H. Zhu, Y. Guan, Q. Zhang, Nanoscale 9 (2017) 7408-7418.
DOI PMID |
[67] |
H. Wang, F. Meng, J. Li, T. Li, Z. Chen, H. Luo, Z. Zhou, ACS Sustain. Chem. Eng. 6(2018) 11801-11810.
DOI URL |
[68] |
H. Zhao, Y. Cheng, H. Lv, G. Ji, Y. Du, Carbon 142 (2019) 245-253.
DOI URL |
[69] |
W.X. Li, F. Guo, X.Q. Wei, Y. Du, Y.Q. Chen, RSC Adv. 10(2020) 36644-36653.
DOI URL |
[70] |
L. Quan, F.X. Qin, D. Estevez, H. Wang, H.X. Peng, Carbon 125 (2017) 630-639.
DOI URL |
[71] |
Y. Zhou, N. Wang, J. Muhammad, D. Wang, Y. Duan, X. Zhang, X. Dong, Z. Zhang, Carbon 148 (2019) 204-213.
DOI URL |
[72] |
X.H. Liang, B. Quan, Z.M. Man, B.C. Cao, N. Li, C.H. Wang, G.B. Ji, T. Yu, ACS Appl. Mater. Interfaces 11 (2019) 30228-30233.
DOI URL |
[73] |
W. Liu, S.J. Tan, Z.H. Yang, G.B. Ji, ACS Appl. Mater. Interfaces 10 (2018) 31610-31622.
DOI URL |
[1] | Lieji Yang, Tianwei Deng, Zirui Jia, Xiaodi Zhou, Hualiang Lv, Yutao Zhu, Juncen Liu, Zhihong Yang. Hierarchical porous hollow graphitized carbon@MoS2 with wideband EM dissipation capability [J]. J. Mater. Sci. Technol., 2021, 83(0): 239-247. |
[2] | Zhenguo Gao, Zehao Zhao, Di Lan, Kaichang Kou, Jiaoqiang Zhang, Hongjing Wu. Accessory ligand strategies for hexacyanometallate networks deriving perovskite polycrystalline electromagnetic absorbents [J]. J. Mater. Sci. Technol., 2021, 82(0): 69-79. |
[3] | Minghang Li, Xiaomeng Fan, Hailong Xu, Fang Ye, Jimei Xue, Xiaoqiang Li, Laifei Cheng. Controllable synthesis of mesoporous carbon hollow microsphere twined by CNT for enhanced microwave absorption performance [J]. J. Mater. Sci. Technol., 2020, 59(0): 164-172. |
[4] | Chen Chen, Sifan Zeng, Xiaochun Han, Yongqiang Tan, Wanlin Feng, Huahai Shen, Shuming Peng, Haibin Zhang. 3D carbon network supported porous SiOC ceramics with enhanced microwave absorption properties [J]. J. Mater. Sci. Technol., 2020, 54(0): 223-229. |
[5] | Heng Chen, Biao Zhao, Zifan Zhao, Huimin Xiang, Fu-Zhi Dai, Jiachen Liu, Yanchun Zhou. Achieving strong microwave absorption capability and wide absorption bandwidth through a combination of high entropy rare earth silicide carbides/rare earth oxides [J]. J. Mater. Sci. Technol., 2020, 47(0): 216-222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||