Please wait a minute...
J. Mater. Sci. Technol.  2019, Vol. 35 Issue (7): 1278-1283    DOI: 10.1016/j.jmst.2019.01.011
Orginal Article Current Issue | Archive | Adv Search |
Effect of heat-input on pitting corrosion behavior of friction stir welded high nitrogen stainless steel
H. Zhang, P. Xue*(), D. Wang, L.H. Wu, D.R. Ni, B.L. Xiao*(), Z.Y. Ma
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(2572KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this study, different welding parameters were selected to investigate the effects of heat-input on the microstructure and corrosion resistance of the friction stir welded high nitrogen stainless steel joints. The results showed that, the welding speed had major influence on the duration at elevated temperature rather than the peak temperature. The hardness distribution and tensile properties of the nugget zones (NZs) for various joints were very similar while the pitting corrosion behavior of various NZs showed major differences. Large heat-input resulted in the ferrite bands being the pitting location, while tool wear bands were sensitive to pitting corrosion in the low heat-input joints. Cr diffusion and tool wear were the main reasons for pitting. The mechanisms of pitting corrosion in the NZs were analyzed in detail.

Key words:  High nitrogen stainless steel      Friction stir welding      Mechanical properties      Corrosion resistance      Heat-input     
Received:  18 November 2018     
Corresponding Authors:  Xue P.,Xiao B.L.     E-mail:  pxue@imr.ac.cn;blxiao@imr.ac.cn
About author: 

1These authors contributed equally to this work.

Cite this article: 

H. Zhang, P. Xue, D. Wang, L.H. Wu, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effect of heat-input on pitting corrosion behavior of friction stir welded high nitrogen stainless steel. J. Mater. Sci. Technol., 2019, 35(7): 1278-1283.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2019.01.011     OR     https://www.jmst.org/EN/Y2019/V35/I7/1278

C Mn Cr Mo N Fe
0.04 15.81 18.36 2.19 0.66 Bal.
Table 1  Chemical compositions of BM (wt%).
Fig. 1.  Surface morphologies and cross-section hardness profiles of FSW HNS joints with different heat-inputs (RS: retreating side; AS: advancing side).
Fig. 2.  Engineering stress-strain curves of BM and NZs of FSW HNS joints with different heat-inputs.
Fig. 3.  Pitting morphologies of FSW HNS joints after 48 h of immersion: (a) 500-25; (b) 500-50; (c) 500-150.
Fig. 4.  Detailed pitting morphologies and depth profiles of FSW HNS joints: (a) 500-25; (b) 500-50; (c) 500-150.
Fig. 5.  EPMA line scan profiles of element distribution near ferrite in FSW HNS joints: (a) 500-25; (b) 500-50; (c) 500-150.
Fig. 6.  Comparison between element contents of ferrite in FSW HNS joints.
Fig. 7.  STEM image (a) and EDS line scan profiles (b, c) of tool wear debris in 500-150 joint.
Fig. 8.  Temperature histories of HAZs in FSW HNS joints.
Fig. 9.  Illustration of (a) tool wear and (b) pitting corrosion mechanisms in FSW HNS joints with different heat inputs.
[1] J.W. Simmons, Mater. Sci. Eng. A 207 (1996) 159-169
[2] I. Woo, Y. Kikuchi, ISIJ Int. 42(2002) 1334-1343
[3] W. Dong, H. Kokawa, Y.S. Sato, S. Tsukamoto, Metall. Mater. Trans. B 36 (2005) 677-681
[4] K. Nishimoto, H. Mori, Sci. Technol. Adv. Mater. 5(2004) 231-240
[5] L. Zhao, Z.L. Tian, Y. Peng, Y.C. Qi, Y.J. Wang, J. Iron.Steel Res. Int. 14(2007) 259-262
[6] M. Raffi, G.M. Reddy, K.S. Rao, Defence Technol. 11 (2015) 237-243 View Record in Scopus
[7] R. Mohammed, G.M. Reddy, K.S. Rao, Trans. Ind. Inst. Met. 69(2016) 1919-1927
[8] T. Ogawa, T. Zaizen, J. Jpn.Welding Soc. 50(1981) 246-250
[9] M. Ogawa, K. Hiraoka, Y. Katada, M. Sagara, S. Tsukamoto, ISIJ Int. 42(2002) 1391-1398
[10] R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R. 50(2005) 1-78
[11] H. Li, S. Yang, S. Zhang, B. Zhang, Z. Jiang, H. Feng, P. Han, J. Li, Mater. Des. 118(2017) 207-217
[12] F.C. Liu, T.W. Nelson, Mater. Des. 115(2017) 467-478
[13] K. Zhao, Z.Y. Liu, B.L. Xiao, Z.Y. Ma, J. Mater. Sci. Technol. 33(2017) 1004-1008
[14] L.H. Wu, K. Nagatsuka, K. Nakata, J. Mater. Sci. Technol. 34(2018) 1628-1637
[15] S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, M. Inagaki, Mater. Sci. Forum 539-543(2007) 3757-3762
[16] Y. Miyano, H. Fujii, Y. Sun, Y. Katada, S. Kuroda, O. Kamiya, Mater. Sci. Eng. A, 528(2011) 2917-2921
[17] D. Wang, D.R. Ni, B.L. Xiao, Z.Y. Ma, W. Wang, K. Yang, Mater. Des. 64(2014) 355-359
[18] D. Du, R. Fu, Y. Li, L. Jing, Y. Ren, K. Yang, Mater. Sci. Eng. A, 616(2014) 246-251
[19] H. Zhang, D. Wang, P. Xue, L.H. Wu, D.R. Ni, Z.Y. Ma, Mater. Des. 110(2016) 802-810
[20] J. Moon, H.Y. Ha, T.H. Lee, C. Lee, Mater. Chem. Phys. 142(2013) 556-563
[21] J. Moon, H.Y. Ha, T.H. Lee, Mater. Charact. 82(2013) 113-119
[22] C.Y. Liu, B. Qu, P. Xue, Z.Y. Ma, K. Luo, M.Z. Ma, R.P. Liu, J. Mater. Sci. Technol. 34(2018) 112-118
[23] A.F. Padilha, P.R. Rios, ISIJ Int. 42(2002) 325-327
[24] H. Baba, Y. Katada, Corros. Sci. 48(2006) 2510-2524
[25] F.M. Bayoumi, W.A. Ghanem, Mater. Lett. 59(2005) 3311-3314
[26] X. Wu, Y. Fu, J. Huang, E. Han, W. Ke, K. Yang, Z. Jiang, Mater. Eng. Perform. 18(2008) 287-298
[27] H.H. Cho, S.T. Hong, J.H. Roh, H.S. Choi, S.H. Kang, R.J. Steel, H.N. Han, Acta Mater. 61(2013) 2649-2661
[28] X.K. Zhu, Y.J. Chao, J. Mater. Process. Technol. 146(2004) 263-272
[1] Praveen Sreeramagiri, Ajay Bhagavatam, Abhishek Ramakrishnan, Husam Alrehaili, Guru Prasad Dinda. Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing[J]. 材料科学与技术, 2020, 47(0): 20-28.
[2] Lei Liu, Liang Wu, Xiaobo Chen, Deen Sun, Yuan Chen, Gen Zhang, Xingxing Ding, Fusheng Pan. Enhanced protective coatings on Ti-10V-2Fe-3Al alloy through anodizing and post-sealing with layered double hydroxides[J]. 材料科学与技术, 2020, 37(0): 104-113.
[3] Qi Wang, Wen Shi, Bo Zhu, Dang Sheng Su. An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin[J]. 材料科学与技术, 2020, 40(0): 24-30.
[4] Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J]. 材料科学与技术, 2020, 40(0): 88-98.
[5] Qian Yan, Bo Song, Yusheng Shi. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting[J]. 材料科学与技术, 2020, 41(0): 199-208.
[6] Yanhui Li, Siwen Wang, Xuewei Wang, Meiling Yin, Wei Zhang. New FeNiCrMo(P, C, B) high-entropy bulk metallic glasses with unusual thermal stability and corrosion resistance[J]. 材料科学与技术, 2020, 43(0): 32-39.
[7] S.Z. Wu, X.G. Qiao, M.Y. Zheng. Ultrahigh strength Mg-Y-Ni alloys obtained by regulating second phases[J]. 材料科学与技术, 2020, 45(0): 117-124.
[8] Shucai Zhang, Huabing Li, Zhouhua Jiang, Zhixing Li, Jingxi Wu, Binbin Zhang, Fei Duan, Hao Feng, Hongchun Zhu. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654[J]. 材料科学与技术, 2020, 42(0): 143-155.
[9] Yanfu Chai, Chao He, Bin Jiang, Jie Fu, Zhongtao Jiang, Qingshan Yang, Haoran Sheng, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy[J]. 材料科学与技术, 2020, 37(0): 26-37.
[10] Liting Guo, Changdong Gu, Jie Feng, Yongbin Guo, Yuan Jin, Jiangping Tu. Hydrophobic epoxy resin coating with ionic liquid conversion pretreatment on magnesium alloy for promoting corrosion resistance[J]. 材料科学与技术, 2020, 37(0): 9-18.
[11] Yinghui Zhou, Xin Lin, Nan Kang, Weidong Huang, Jiang Wang, Zhennan Wang. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy[J]. 材料科学与技术, 2020, 37(0): 143-153.
[12] Qiuyan Huang, Yang Liu, Aiyue Zhang, Haoxin Jiang, Hucheng Pan, Xiaohui Feng, Changlin Yang, Tianjiao Luo, Yingju Li, Yuansheng Yang. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration[J]. 材料科学与技术, 2020, 38(0): 39-46.
[13] A.V. Pozdniakov, R.Yu. Barkov. Microstructure and mechanical properties of novel Al-Y-Sc alloys with high thermal stability and electrical conductivity[J]. 材料科学与技术, 2020, 36(0): 1-6.
[14] P. Wang, C.S. Lao, Z.W. Chen, Y.K. Liu, H. Wang, H. Wendrock, J. Eckert, S. Scudino. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting[J]. 材料科学与技术, 2020, 36(0): 18-26.
[15] Maryam Jamalian, David P.Field. Gradient microstructure and enhanced mechanical performance of magnesium alloy by severe impact loading[J]. 材料科学与技术, 2020, 36(0): 45-49.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.