Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 42 Issue (0): 122-129    DOI: 10.1016/j.jmst.2019.12.002
Orginal Article Current Issue | Archive | Adv Search |
Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi
Jifeng Zhanga, Ting Jiaa, Huan Qiua, Heguo Zhua*(), Zonghan Xiebc**()
a College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
b School of Mechanical Engineering, University of Adelaide, SA 5005, Australia
c School of Engineering, Edith Cowan University, WA 6027, Australia
Download:  HTML  PDF(4732KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Three types of in-situ TiC (5 vol%, 10 vol% and 15 vol%) reinforced high entropy alloy CoCrFeNi matrix composites were produced by vacuum induction smelting. The effect of two extreme cooling conditions (i.e., slow cooling in furnace and rapid cooling in copper crucible) upon the microstructure and mechanical properties was examined. In the case of slow cooling in the furnace, TiC was found to form mostly along the grain boundaries for the 5 vol% samples. With the increase of TiC reinforcements, fibrous TiC appeared and extended into the matrix, leading to an increase in hardness. The ultimate tensile strength of the composites shows a marked variation with increasing TiC content; that is, 425.6 MPa (matrix), 372.8 MPa (5 vol%), 550.4 MPa (10 vol%) and 334.3 MPa (15 vol%), while the elongation-to-failure (i.e., ductility) decreases. The fracture pattern was found to transit from the ductile to cleavage fracture, as the TiC content increased. When the samples cooled rapidly in copper crucible, the TiC particles formed both along the grain boundaries and within the grains. With the increase of TiC volume fraction, both the hardness and ultimate tensile strength of the resulting composites improved steadily while the elongation-to-failure declined. Therefore, the fast cooling can be used to drastically improve the strength of in-situ TiC reinforced CoCrFeNi. For example, for the 15 vol% TiC/CoCrFeNi composite cooled in the copper crucible, the hardness and ultimate tensile strength can reach as high as 595 HV and 941.7 MPa, respectively.

Key words:  High entropy alloy matrix composites      Cooling rate      Microstructure      Mechanical properties     
Received:  20 May 2019     
Corresponding Authors:  Zhu Heguo,Xie Zonghan     E-mail:  zhg1200@njust.edu.cn;zonghan.xie@adelaide.edu.au

Cite this article: 

Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi. J. Mater. Sci. Technol., 2020, 42(0): 122-129.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2019.12.002     OR     https://www.jmst.org/EN/Y2020/V42/I0/122

Furnace cooled Copper crucible cooled TiC content (vol%) Co Cr Fe Ni Ti C
F0 Cu0 Matrix (0) 1 1 1 1 0 0
F5 Cu5 5 1 1 1 1 0.12 0.12
F10 Cu10 10 1 1 1 1 0.25 0.25
F15 Cu15 15 1 1 1 1 0.40 0.40
Table 1  Molar ratio of the composite specimens fabricated under different conditions.
Fig. 1.  Cooling rate curve of (a) furnace cooled and (b) copper crucible cooled samples.
Fig. 2.  XRD patterns of CoCrFeNi alloy and its composites: (a) cooled in the furnace; (b) cooled in a copper crucible.
Fig. 3.  Gibbs free energy change curves of Ni-Ti-C system.
Fig. 4.  (a) SEM image of the Ni-Ti-C system, (b) energy dispersive spectrometer of TiC in the Ni-Ti-C system and (c) XRD patterns of the Ni-Ti-C system.
Fig. 5.  SEM images of CoCrFeNi with different volume fractions of TiC particulates prepared from cooling in the furnace: (a) matrix; (b) 5 vol% TiC; (c) 10 vol% TiC; (d) 15 vol% TiC; (e) energy dispersive spectrometer of matrix; (f) energy dispersive spectrometer of TiC.
Fig. 6.  SEM images of CoCrFeNi with different volume fractions of TiC prepared from cooling in a copper crucible after chemical etching: (a) matrix; (b) 5 vol% TiC; (c) 10 vol% TiC; (d) 15 vol% TiC.
Fig. 7.  High magnification SEM images and elemental map analyses of CoCrFeNi+15 vol% TiC: (a) cooled in the furnace (sample F15); (b) cooled in a copper crucible (sample Cu15).
Fig. 8.  TEM micrographs and diffraction patterns of different shape TiC in 15 vol% TiC/CoCrFeNi composites cooled in the furnace (sample F15): (a) micrograph of blocky TiC; (b) micrograph of chain shaped TiC; (c) diffraction pattern of blocky TiC; (d) diffraction pattern of chain shaped TiC.
Volume fraction of TiC (vol%) Vickers hardness (HV) UTS (MPa) Elongation (%)
Furnace cooled Copper crucible cooled Furnace cooled Copper crucible cooled Furnace cooled Copper crucible cooled
0 288 291 425.6 498.0 70.9 70.1
5 391 412 372.8 811.2 18.9 51.7
10 446 546 550.4 916.0 8.3 30.0
15 513 595 334.3 941.7 3.7 18.1
Table 2  Mechanical properties of CoCrFeNi and its composites.
Fig. 9.  Vickers hardness of CoCrFeNi alloys load and its composites under 0.5 kg.
Fig. 10.  Typical engineering stress-strain curves of CoCrFeNi and its composites: (a) cooling in the furnace; (b) cooling in a copper crucible.
Fig. 11.  Fracture surfaces of the in-situ TiC/CoCrFeNi alloy composites with different volume fractions of TiC cooled in the furnace: (a) matrix; (b) 5 vol% TiC; (c) 10 vol% TiC; (d) 15 vol% TiC.
Fig. 12.  Fracture surfaces of the in-situ TiC/CoCrFeNi alloy composites with various volume fraction of TiC cooling in a copper crucible: (a) matrix; (b) 5 vol% TiC; (c) 10 vol% TiC; (d) 15 vol% TiC.
[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6(2004) 299-303.
[2] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375 (2004) 213-218.
[3] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, J. Alloys. Compd. 488(2009) 57-64.
[4] H. Chen, A. Kauffmann, B. Gorr, D. Schliephake, C. Seemüller, J.N. Wagner, H.J. Christ, M. Heilmaier, J. Alloys. Compd. 661(2016) 206-215.
[5] O.N. Senkov, C. Woodward, D.B. Miracle, JOM 66 (2014) 2030-2042.
[6] B. Gorr, M. Azim, H. Christ, H. Chen, D.V. Szabo, A. Kauffmann, M. Heilmaier, Mater. Trans. A 47 (2016) 961-970.
[7] Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19 (2016) 349-362.
[8] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61(2014) 1-93.
[9] P. Cui, Y.M. Ma, L.J. Zhang, M.D. Zhang, J.T. Fan, W.Q. Dong, P.F. Yu, G. Li, R.P. Liu, Mater. Sci. Eng. A 737 (2018) 198-204.
[10] W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, C.T. Liu, Acta Mater. 116(2016) 332-342.
[11] W.H. Liu, T. Yang, C.T. Liu, Mater. Chem. Phys. 210(2018) 2-11.
[12] M.R. Chen, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, C.P. Tu, Mater. Trans. 47(2006) 1395.
[13] C. Ng, S. Guo, J.H. Luan, Q. Wang, J. Lu, S.Q. Shi, C.T. Liu, J. Alloys. Compd. 584(2014) 5.
[14] J. Wang, T. Guo, J.S. Li, W.J. Jia, H.C. Kou, Mater. Chem. Phys. 210(2018) 192-196.
[15] J.S. Li, W.J. Jia, J. Wang, H.C. Kou, D. Zhang, E. Beaugnon, Mater. Des. 95(2016) 183-187.
[16] D. Vallauri, I.C.A. Adrián, A. Chrysanthou, J. Eur. Ceram. Soc. 28(2008) 1697-1713.
[17] J.B. Cheng, D. Liu, X.B. Liang, Y.X. Chen, Surf. Coat. Technol. 281(2015) 109-116.
[18] X.D. Sun, H.G. Zhu, J.L. Li, J.W. Huang, Z.H. Xie, Mater. Chem. Phys. 220(2018) 449-459.
[19] H.W. Wang, J.Q. Qi, C.M. Zou, D.D. Zhu, Z.J. Wei, Mater. Sci. Eng. A 545 (2012) 209-213.
[20] Q.C. Fan, B.S. Li, Y. Zhang, Mater. Sci. Eng. A 598 (2014) 244-250.
[21] Z.Z. Fu, R. Koc, Mater. Sci. Eng. A 735 (2018) 302-309.
[22] Y.K. Lv, R.Y. Hu, Z.H. Yao, J. Chen, D.P. Xu, Y. Liu, X.H. Fan, Mater. Des. 132(2017) 392-399.
[23] J.D. Wang, L.Q. Li, P.P. Lin, J.M. Wang, Opt. Laser Technol. 105(2018) 195-206.
[24] A. Johnson, K. Kumar, C. Briant, Mater. Trans. A 34 (2003) 1869-1877.
[25] A.K. Srivastava, K. Das, Mater. Sci. Eng. A 516 (2009) 1-6.
[26] R. Hadian, M. Emamy, N. Varahram, N. Nemati, Mater. Sci. Eng. A 490 (2008) 250-257.
[1] P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion[J]. 材料科学与技术, 2020, 45(0): 98-107.
[2] Yanfu Chai, Chao He, Bin Jiang, Jie Fu, Zhongtao Jiang, Qingshan Yang, Haoran Sheng, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy[J]. 材料科学与技术, 2020, 37(0): 26-37.
[3] Yinghui Zhou, Xin Lin, Nan Kang, Weidong Huang, Jiang Wang, Zhennan Wang. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy[J]. 材料科学与技术, 2020, 37(0): 143-153.
[4] Qiuyan Huang, Yang Liu, Aiyue Zhang, Haoxin Jiang, Hucheng Pan, Xiaohui Feng, Changlin Yang, Tianjiao Luo, Yingju Li, Yuansheng Yang. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration[J]. 材料科学与技术, 2020, 38(0): 39-46.
[5] Xi Xie, Rui Yang, Yuyou Cui, Qing Jia, Chunguang Bai. Fabrication of textured Ti2AlC lamellar composites with improved mechanical properties[J]. 材料科学与技术, 2020, 38(0): 86-92.
[6] Liu Weifeng, Cao Yanfei, Guo Yifeng, Sun Mingyue, Xu Bin, Li Dianzhong. Solidification microstructure of Cr4Mo4V steel forged in the semi-solid state[J]. 材料科学与技术, 2020, 38(0): 170-182.
[7] Varma S.K., Sanchez Francelia, Moncayo Sabastian, Ramana C.V.. Static and cyclic oxidation of Nb-Cr-V-W-Ta high entropy alloy in air from 600 to 1400 °C[J]. 材料科学与技术, 2020, 38(0): 189-196.
[8] A.V. Pozdniakov, R.Yu. Barkov. Microstructure and mechanical properties of novel Al-Y-Sc alloys with high thermal stability and electrical conductivity[J]. 材料科学与技术, 2020, 36(0): 1-6.
[9] P. Wang, C.S. Lao, Z.W. Chen, Y.K. Liu, H. Wang, H. Wendrock, J. Eckert, S. Scudino. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting[J]. 材料科学与技术, 2020, 36(0): 18-26.
[10] Maryam Jamalian, David P.Field. Gradient microstructure and enhanced mechanical performance of magnesium alloy by severe impact loading[J]. 材料科学与技术, 2020, 36(0): 45-49.
[11] H.X. Zeng, Z.W. Liu, J.S. Zhang, X.F. Liao, H.Y. Yu. Towards the diffusion source cost reduction for NdFeB grain boundary diffusion process[J]. 材料科学与技术, 2020, 36(0): 50-54.
[12] Hongyu Wu, Dong Zhang, Biaobiao Yang, Chao Chen, Yunping Li, Kechao Zhou, Liang Jiang, Ruiping Liu. Microstructural evolution and defect formation in a powder metallurgy nickel-based superalloy processed by selective laser melting[J]. 材料科学与技术, 2020, 36(0): 7-17.
[13] Mulin Liu, Naoki Takata, Asuka Suzuki, Makoto Kobashi. Development of gradient microstructure in the lattice structure of AlSi10Mg alloy fabricated by selective laser melting[J]. 材料科学与技术, 2020, 36(0): 106-117.
[14] H.F. Li, Z.Z. Shi, L.N. Wang. Opportunities and challenges of biodegradable Zn-based alloys[J]. 材料科学与技术, 2020, 46(0): 136-138.
[15] Xiaoyang Yi, Bin Sun, Weihong Gao, Xianglong Meng, Zhiyong Gao, Wei Cai, Liancheng Zhao. Microstructure evolution and superelasticity behavior of Ti-Ni-Hf shape memory alloy composite with multi-scale and heterogeneous reinforcements[J]. 材料科学与技术, 2020, 42(0): 113-121.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.