J. Mater. Sci. Technol. ›› 2020, Vol. 42: 122-129.DOI: 10.1016/j.jmst.2019.12.002
Special Issue: High Entropy Alloys 2018-2020
• Orginal Article • Previous Articles Next Articles
Jifeng Zhanga, Ting Jiaa, Huan Qiua, Heguo Zhua*(), Zonghan Xiebc**(
)
Received:
2019-05-20
Revised:
2019-08-29
Accepted:
2019-09-13
Published:
2020-04-01
Online:
2020-04-16
Contact:
Zhu Heguo,Xie Zonghan
Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. J. Mater. Sci. Technol., 2020, 42: 122-129.
Furnace cooled | Copper crucible cooled | TiC content (vol%) | Co | Cr | Fe | Ni | Ti | C |
---|---|---|---|---|---|---|---|---|
F0 | Cu0 | Matrix (0) | 1 | 1 | 1 | 1 | 0 | 0 |
F5 | Cu5 | 5 | 1 | 1 | 1 | 1 | 0.12 | 0.12 |
F10 | Cu10 | 10 | 1 | 1 | 1 | 1 | 0.25 | 0.25 |
F15 | Cu15 | 15 | 1 | 1 | 1 | 1 | 0.40 | 0.40 |
Table 1 Molar ratio of the composite specimens fabricated under different conditions.
Furnace cooled | Copper crucible cooled | TiC content (vol%) | Co | Cr | Fe | Ni | Ti | C |
---|---|---|---|---|---|---|---|---|
F0 | Cu0 | Matrix (0) | 1 | 1 | 1 | 1 | 0 | 0 |
F5 | Cu5 | 5 | 1 | 1 | 1 | 1 | 0.12 | 0.12 |
F10 | Cu10 | 10 | 1 | 1 | 1 | 1 | 0.25 | 0.25 |
F15 | Cu15 | 15 | 1 | 1 | 1 | 1 | 0.40 | 0.40 |
Fig. 4. (a) SEM image of the Ni-Ti-C system, (b) energy dispersive spectrometer of TiC in the Ni-Ti-C system and (c) XRD patterns of the Ni-Ti-C system.
Fig. 5. SEM images of CoCrFeNi with different volume fractions of TiC particulates prepared from cooling in the furnace: (a) matrix; (b) 5 vol% TiC; (c) 10 vol% TiC; (d) 15 vol% TiC; (e) energy dispersive spectrometer of matrix; (f) energy dispersive spectrometer of TiC.
Fig. 6. SEM images of CoCrFeNi with different volume fractions of TiC prepared from cooling in a copper crucible after chemical etching: (a) matrix; (b) 5 vol% TiC; (c) 10 vol% TiC; (d) 15 vol% TiC.
Fig. 7. High magnification SEM images and elemental map analyses of CoCrFeNi+15 vol% TiC: (a) cooled in the furnace (sample F15); (b) cooled in a copper crucible (sample Cu15).
Fig. 8. TEM micrographs and diffraction patterns of different shape TiC in 15 vol% TiC/CoCrFeNi composites cooled in the furnace (sample F15): (a) micrograph of blocky TiC; (b) micrograph of chain shaped TiC; (c) diffraction pattern of blocky TiC; (d) diffraction pattern of chain shaped TiC.
Volume fraction of TiC (vol%) | Vickers hardness (HV) | UTS (MPa) | Elongation (%) | |||
---|---|---|---|---|---|---|
Furnace cooled | Copper crucible cooled | Furnace cooled | Copper crucible cooled | Furnace cooled | Copper crucible cooled | |
0 | 288 | 291 | 425.6 | 498.0 | 70.9 | 70.1 |
5 | 391 | 412 | 372.8 | 811.2 | 18.9 | 51.7 |
10 | 446 | 546 | 550.4 | 916.0 | 8.3 | 30.0 |
15 | 513 | 595 | 334.3 | 941.7 | 3.7 | 18.1 |
Table 2 Mechanical properties of CoCrFeNi and its composites.
Volume fraction of TiC (vol%) | Vickers hardness (HV) | UTS (MPa) | Elongation (%) | |||
---|---|---|---|---|---|---|
Furnace cooled | Copper crucible cooled | Furnace cooled | Copper crucible cooled | Furnace cooled | Copper crucible cooled | |
0 | 288 | 291 | 425.6 | 498.0 | 70.9 | 70.1 |
5 | 391 | 412 | 372.8 | 811.2 | 18.9 | 51.7 |
10 | 446 | 546 | 550.4 | 916.0 | 8.3 | 30.0 |
15 | 513 | 595 | 334.3 | 941.7 | 3.7 | 18.1 |
Fig. 11. Fracture surfaces of the in-situ TiC/CoCrFeNi alloy composites with different volume fractions of TiC cooled in the furnace: (a) matrix; (b) 5 vol% TiC; (c) 10 vol% TiC; (d) 15 vol% TiC.
Fig. 12. Fracture surfaces of the in-situ TiC/CoCrFeNi alloy composites with various volume fraction of TiC cooling in a copper crucible: (a) matrix; (b) 5 vol% TiC; (c) 10 vol% TiC; (d) 15 vol% TiC.
|
[1] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
[2] | Yongsheng Liu, Jiaying Jin, Tianyu Ma, Baixing Peng, Xinhua Wang, Mi Yan. Promoting the La solution in 2:14: 1-type compound: Resultant chemical deviation and microstructural nanoheterogeneity [J]. J. Mater. Sci. Technol., 2021, 62(0): 195-202. |
[3] | Yuan Wu, Fei Zhang, Xiaoyuan Yuan, Hailong Huang, Xiaocan Wen, Yihan Wang, Mengyuan Zhang, Honghui Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, Zhaoping Lu. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 214-220. |
[4] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[5] | Jing Chen, Liang Wu, Xingxing Ding, Qiang Liu, Xu Dai, Jiangfeng Song, Bin Jiang, Andrej Atrens, Fusheng Pan. Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2021, 64(0): 10-20. |
[6] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
[7] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[8] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
[9] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
[10] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
[11] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[12] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
[13] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
[14] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
[15] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: II. Parameter analysis and fatigue strength improvement [J]. J. Mater. Sci. Technol., 2021, 70(0): 250-267. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||