J. Mater. Sci. Technol. ›› 2020, Vol. 40 ›› Issue (0): 24-30.DOI: 10.1016/j.jmst.2019.08.038
Previous Articles Next Articles
Qi Wangabc*(), Wen Shiabc, Bo Zhud, Dang Sheng Subc
Received:
2019-06-09
Revised:
2019-08-14
Accepted:
2019-08-30
Online:
2020-03-01
Published:
2020-04-01
Contact:
Wang Qi
Qi Wang, Wen Shi, Bo Zhu, Dang Sheng Su. An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin[J]. J. Mater. Sci. Technol., 2020, 40(0): 24-30.
Sample | ID1/IG | ID2/IG | ID(1+2)/IG |
---|---|---|---|
CNT | 1.59 | 0.26 | 1.85 |
oCNT-1 | 1.65 | 0.24 | 1.89 |
oCNT-2 | 2.85 | 0.38 | 3.23 |
oCNT-3 | 2.51 | 0.52 | 3.03 |
Table 1 Defects situation of obtained CNTs.
Sample | ID1/IG | ID2/IG | ID(1+2)/IG |
---|---|---|---|
CNT | 1.59 | 0.26 | 1.85 |
oCNT-1 | 1.65 | 0.24 | 1.89 |
oCNT-2 | 2.85 | 0.38 | 3.23 |
oCNT-3 | 2.51 | 0.52 | 3.03 |
Sample | C (at.%) | O (at.%) | C=O (at.%) | O=C—O (at.%) | C—OH (at.%) |
---|---|---|---|---|---|
CNT | 97.71 | 2.29 | - | 1.22 | 1.07 |
oCNT-1 | 95.29 | 4.71 | 1.35 | 1.81 | 1.55 |
oCNT-2 | 96.92 | 3.08 | - | 1.76 | 1.32 |
oCNT-3 | 96.74 | 3.26 | - | 1.70 | 1.56 |
Table 2 XPS results of CNTs.
Sample | C (at.%) | O (at.%) | C=O (at.%) | O=C—O (at.%) | C—OH (at.%) |
---|---|---|---|---|---|
CNT | 97.71 | 2.29 | - | 1.22 | 1.07 |
oCNT-1 | 95.29 | 4.71 | 1.35 | 1.81 | 1.55 |
oCNT-2 | 96.92 | 3.08 | - | 1.76 | 1.32 |
oCNT-3 | 96.74 | 3.26 | - | 1.70 | 1.56 |
Sample | Tensile strength (MPa) | Young’s modulus (GPa) | Elongation at break (%) | Impact strength (kJ/m2) | K1c (MPa m1/2) | G’30b (MPa) | Tgc (°C) |
---|---|---|---|---|---|---|---|
Neat epoxya | 65.0 ± 2.4 | 2.77 ± 0.13 | 5.5 ± 0.6 | 26.3 ± 2.1 | 1.16 ± 0.10 | 757.6 | 106.9 |
CNT/epoxya | 58.0 ± 2.8 | 2.47 ± 0.05 | 5.0 ± 0.5 | 31.3 ± 2.7 | 4.03 ± 0.18 | 901.1 | 106.6 |
oCNT-1/epoxya | 69.5 ± 0.4 | 2.97 ± 0.04 | 4.8 ± 0.5 | 41.9 ± 3.1 | 3.73 ± 0.08 | 698.6 | 107.3 |
oCNT-2/epoxy | 76.1 ± 1.1 | 3.32 ± 0.14 | 5.2 ± 0.2 | 26.1 ± 2.5 | 3.71 ± 0.06 | 938.5 | 105.3 |
oCNT-3/epoxy | 73.1 ± 0.4 | 2.90 ± 0.04 | 5.9 ± 0.3 | 42.6 ± 0.6 | 4.21 ± 0.10 | 847.5 | 105.0 |
Table 3 Mechanical performances of the obtained samples.
Sample | Tensile strength (MPa) | Young’s modulus (GPa) | Elongation at break (%) | Impact strength (kJ/m2) | K1c (MPa m1/2) | G’30b (MPa) | Tgc (°C) |
---|---|---|---|---|---|---|---|
Neat epoxya | 65.0 ± 2.4 | 2.77 ± 0.13 | 5.5 ± 0.6 | 26.3 ± 2.1 | 1.16 ± 0.10 | 757.6 | 106.9 |
CNT/epoxya | 58.0 ± 2.8 | 2.47 ± 0.05 | 5.0 ± 0.5 | 31.3 ± 2.7 | 4.03 ± 0.18 | 901.1 | 106.6 |
oCNT-1/epoxya | 69.5 ± 0.4 | 2.97 ± 0.04 | 4.8 ± 0.5 | 41.9 ± 3.1 | 3.73 ± 0.08 | 698.6 | 107.3 |
oCNT-2/epoxy | 76.1 ± 1.1 | 3.32 ± 0.14 | 5.2 ± 0.2 | 26.1 ± 2.5 | 3.71 ± 0.06 | 938.5 | 105.3 |
oCNT-3/epoxy | 73.1 ± 0.4 | 2.90 ± 0.04 | 5.9 ± 0.3 | 42.6 ± 0.6 | 4.21 ± 0.10 | 847.5 | 105.0 |
Fig. 6. Storage modulus (a) and tanδ (b) vs. temperature curves of the samples (curves of neat epoxy, CNT/epoxy and oCNT-1/epoxy were taken from our previous work [18] for comparison).
Fig. 7. Viscosity vs shear rate curves for epoxy, (oCNT-1+epoxy) and (oCNT-3+epoxy) (curves of epoxy and (oCNT-1+epoxy) were taken from our previous work [18] for comparison).
|
[1] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[2] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[3] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[4] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[5] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[6] | Timothy Alexander Listyawan, Hyunjong Lee, Nokeun Park. A new guide for improving mechanical properties of non-equiatomic FeCoCrMnNi medium- and high-entropy alloys with ultrasonic nanocrystal surface modification process [J]. J. Mater. Sci. Technol., 2020, 59(0): 37-43. |
[7] | Yanfu Chai, Chao He, Bin Jiang, Jie Fu, Zhongtao Jiang, Qingshan Yang, Haoran Sheng, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy [J]. J. Mater. Sci. Technol., 2020, 37(0): 26-37. |
[8] | Yinghui Zhou, Xin Lin, Nan Kang, Weidong Huang, Jiang Wang, Zhennan Wang. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy [J]. J. Mater. Sci. Technol., 2020, 37(0): 143-153. |
[9] | Qiuyan Huang, Yang Liu, Aiyue Zhang, Haoxin Jiang, Hucheng Pan, Xiaohui Feng, Changlin Yang, Tianjiao Luo, Yingju Li, Yuansheng Yang. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration [J]. J. Mater. Sci. Technol., 2020, 38(0): 39-46. |
[10] | A.V. Pozdniakov, R.Yu. Barkov. Microstructure and mechanical properties of novel Al-Y-Sc alloys with high thermal stability and electrical conductivity [J]. J. Mater. Sci. Technol., 2020, 36(0): 1-6. |
[11] | P. Wang, C.S. Lao, Z.W. Chen, Y.K. Liu, H. Wang, H. Wendrock, J. Eckert, S. Scudino. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36(0): 18-26. |
[12] | Maryam Jamalian, David P.Field. Gradient microstructure and enhanced mechanical performance of magnesium alloy by severe impact loading [J]. J. Mater. Sci. Technol., 2020, 36(0): 45-49. |
[13] | Chuang Liu, Fanxin Zeng, Li Xu, Shuangyu Liu, Jincheng Liu, Xinping Ai, Hanxi Yang, Yuliang Cao. Enhanced cycling stability of antimony anode by downsizing particle and combining carbon nanotube for high-performance sodium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 81-88. |
[14] | C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates [J]. J. Mater. Sci. Technol., 2020, 41(0): 105-116. |
[15] | Miao Cao, Qi Zhang, Ke Huang, Xinjian Wang, Botao Chang, Lei Cai. Microstructural evolution and deformation behavior of copper alloy during rheoforging process [J]. J. Mater. Sci. Technol., 2020, 42(0): 17-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||