J. Mater. Sci. Technol. ›› 2021, Vol. 64: 99-113.DOI: 10.1016/j.jmst.2020.06.031
• Research Article • Previous Articles Next Articles
Pan Liua, Qinhao Zhanga, Xinran Lib, Jiming Hua,*(), Fahe Caob,*()
Received:
2020-04-12
Accepted:
2020-06-05
Published:
2021-02-20
Online:
2021-03-15
Contact:
Jiming Hu,Fahe Cao
About author:
caofh5@mail.sysu.edu.cn (F. Cao).Pan Liu, Qinhao Zhang, Xinran Li, Jiming Hu, Fahe Cao. Insight into the triggering effect of (Al, Mg, Ca, Mn)-oxy-sulfide inclusions on localized corrosion of weathering steel[J]. J. Mater. Sci. Technol., 2021, 64: 99-113.
Fig. 1. SEM images of (a) WS after etching treatment and (b) the fine microstructure (ferrite phase, pearlite phase and grain boundaries) under high magnification.
Fig. 3. (a, b) Morphologies of the representative inclusions with or without interstice and (a1-a7, b1-b7) its corresponding elemental distribution results as well as (a8, b8) sketch maps of target inclusions.
Fig. 4. (a) SEM images of the target inclusions in a selected area and (b) the partial images under higher magnification as well as (c) its corresponding elemental analysis results by EDS line scan. (d) AFM topography maps and (e) the corresponding Volta potential map of the selected target inclusions (this region is the same as the region of image (b)). (f) Height line map and Volta potential map based on sweep analysis results of (d) and (e).
Fig. 5. SEM images of (a, d) the target inclusions with (b, e) its’ enlarged view (top right corner) (a, b) before immersion test and (d, e) after 5 min immersion test. (c) Corresponding line scan results of elemental analysis of the target inclusions before immersion test and (e1-e7) elemental distributions of the residual inclusions after 5 min immersion test. The same regional 3D profiles (f) and 2D images (g) after 5 min immersion test. (h) Height line map drawn from sectional profile tagged by (g) black line.
Fig. 6. SEM images of (a, d) the target inclusions with (b, e) its’ enlarged view (top right corner) (a, b) before immersion test and (d, e) after 20 min immersion test. (c) Corresponding line scan results of elemental analysis of the target inclusions before immersion test and (e1-e7) elemental distributions of the residual inclusions after 20 min immersion test. The same regional 3D profiles (f) and 2D images (g) after 20 min immersion test. (h) Height line map drawn from sectional profile tagged by (g) black line.
Fig. 7. SEM images of (a, d) the target inclusions with (b, e) its’ enlarged view (top right corner) (a, b) before immersion test and (d, e) after 120 min immersion test. (c) Corresponding line scan results of elemental analysis of the target inclusions before immersion test and (e1-e7) elemental distributions of the residual inclusions after 120 min immersion test. The same regional 3D profiles (f) and 2D images (g) after 120 min immersion test. (h) Height line map drawn from sectional profile tagged by (g) black line.
Fig. 8. SEM images of (a, d) the target inclusions with (b, e) its’ enlarged view (top right corner) (a, b) before immersion test and (d, e) after 240 min immersion test. (c) Corresponding line scan results of elemental analysis of the target inclusions before immersion test and (e1-e7) elemental distributions of the residual inclusions after 240 min immersion test. The same regional 3D profiles (f) and 2D images (g) after 240 min immersion test. (h) Height line map drawn from sectional profile tagged by (g) black line.
Fig. 9. SEM images of (a) the target inclusions with (b) its’ enlarged view (top right corner) before immersion test. (d) Surface topography images of WS after 360 min immersion test and (e, f) two typical features of inclusion after immersion (not the same location as the selected target inclusion). (c) Corresponding line scan results of elemental analysis of target inclusions before immersion test and (f1-f7) elemental distributions of the residual inclusions after 360 min immersion test (not the same location as the selected target inclusion). The 3D profiles (g) and 2D images (h) of surface topography after 360 min immersion test. (i) Height line map drawn from sectional profile tagged by (h) black line. (j) Cross-sectional results of WS after immersion for 360 min.
Fig. 10. SEM images of the selected observing region (a) before immersion test and (b) after 1440 min immersion test. Surface morphologic 3D profiles (c) and 2D images (d) after 1440 min immersion test. (e) Height line map drawn from sectional profile tagged by (d) black line.
Fig. 11. Evolution map of maximum depth (marked with blue circle) and average depth (marked with red circle) around the target inclusions or selected region with immersion time. Number 1, 2 and 3 represent three stages of average depth and maximum depth with immersion time.
Fig. 12. SEM images of (a) the selected observing region and (b) the selected target inclusions. (c) Corresponding line scan results of elemental analysis of target inclusions. (d) AFM topography map and (e) corresponding conductive map of the selected target inclusions by applying potential of +5.0 V to probe tip. (f) Results of line profile analysis based on conductive map of the selected target inclusions.
Fig. 13. (a) SEM images of the selected target inclusions after ion etching treatment with (b) corresponding elemental analysis results. (c) Surface normal-projected IPF orientation map and (d) the same regional KAM maps.
Fig. 14. Mechanism of corrosion evolution of (Al, Mg, Ca, Mn)-oxy-sulfide inclusions and metal matrix around inclusions in condition of aggressive environments merely containing Cl-. Varied colorful polygons represent grains with different misorientations. The polygons are not the real shape of grains.
[1] | M.S. Islam, M. Sakairi , Corros. Sci., 153(2019), pp. 100-108. |
[2] | J. Fu, F. Li, J. Sun, K. Cui, X. Du, Y. Wu, J. Electroanal. Chem., 841(2019), pp. 56-62. |
[3] | W. Xu, E.H. Han, Z. Wang, J. Mater. Sci. Technol., 35(2019), pp. 64-75. |
[4] | S. Sun, W. Chen, S. Yi, S. Cao , Colloids Surf. A, 558(2018), pp. 130-137. |
[5] | Y. Kang, W.M. Mao, Y.J. Chen, J. Jing, M. Cheng , Mater. Sci. Eng. A, 677(2016), pp. 211-221. |
[6] | B. Panda, R. Balasubramaniam, G. Dwivedi , Corros. Sci., 50(2008), pp. 1684-1692. |
[7] | R. Avci, B.H. Davis, M.L. Wolfenden, I.B. Beech, K. Lucas, D. Paul , Corros. Sci., 76(2013), pp. 267-274. |
[8] | L. Hao, S. Zhang, J. Dong, W. Ke , Corros. Sci., 53(2011), pp. 4187-4192. |
[9] | L. Hao, S. Zhang, J. Dong, W. Ke , Corros. Sci., 59(2012), pp. 270-276. |
[10] | J. Aramendia, L. Gomez-Nubla, I. Arrizabalaga, N. Prieto-Taboada, K. Castro, J.M. Madariaga , Corros. Sci., 76(2013), pp. 154-162. |
[11] | X.G. Li, D.W. Zhang, Z.Y. Liu, Z. Li, C.W. Du, C.F. Dong , Nature, 527(2015), pp. 441-442. |
[12] | C. Escrivà-Cerdán, S.W. Ooi, G.R. Joshi, R. Morana, H.K.D.H. Bhadeshia, R. Akid , Corros. Sci., 154(2019), pp. 36-48. |
[13] | C. Jia, Y. Shao, L. Guo, Y. Liu , Constr. Build. Mater., 187(2018), pp. 1242-1252. |
[14] | B.O. Okonkwo, H. Ming, Z. Zhang, J. Wang, E. Rahimi, S. Hosseinpour, A. Davoodi , Corros. Sci., 154(2019), pp. 49-60. |
[15] | T. Misawa , Corros. Sci., 14(1974), pp. 279-289. |
[16] | B.W.A. Sherar, I.M. Power, P.G. Keech, S. Mitlin, G.Southam, D.W. Shoesmith, Corros. Sci., 53(2011), pp. 955-960. |
[17] | M. Rao, G. Li, X. Zhang, J. Luo, Z. Peng, T. Jiang , Sep. Sci. Technol., 51(2016), pp. 1727-1735. |
[18] | L. Wang, J. Xin, L. Cheng, K. Zhao, B. Sun, J. Li, X. Wang, Z. Cui , Corros. Sci., 147(2019), pp. 108-127. |
[19] | B. Lin, R. Hu, C. Ye, Y. Li, C. Lin , Electrochim. Acta, 55(2010), pp. 6542-6545. |
[20] | X. Liu, J.C. Yang, L. Yang, X.Z. Gao , J. Iron Steel Res. Int., 17(2010), pp. 59-64. |
[21] | P. Schmuki, H. Hildebrand, A. Friedrich, S. Virtanen , Corros. Sci., 47(2005), pp. 1239-1250. |
[22] | J. Tan, X. Wu, E.H. Han, W. Ke, X. Liu, F. Meng, X. Xu , Corros. Sci., 88(2014), pp. 349-359. |
[23] | J. Torkkeli, T. Saukkonen, H. Hänninen , Corros. Sci., 96(2015), pp. 14-22. |
[24] | C. Yang, Y. Luan, D. Li, Y. Li, J. Mater. Sci. Technol., 35(2019), pp. 1298-1308. |
[25] | Y. Li, J. Liu, Y. Deng, X. Han, W. Hu, C. Zhong, J. Alloys Compd., 673(2016), pp. 28-37. |
[26] | H.B. Xue, Y.F. Cheng , Corros. Sci., 53(2011), pp. 1201-1208. |
[27] | A. Chiba, I. Muto, Y. Sugawara, N. Hara, , J. Electrochem. Soc., 160(2013), pp. C511-C520. |
[28] | C. Liu, R.I. Revilla, Z. Liu, D. Zhang, X. Li, H. Terryn , Corros. Sci., 129(2017), pp. 82-90. |
[29] | J. Wei, J.H. Dong, W. Ke, X.Y. He , Corrosion, 71(2015), pp. 1467-1480. |
[30] | S. Zheng, C. Li, Y. Qi, L. Chen, C. Chen , Corros. Sci., 67(2013), pp. 20-31. |
[31] | Y. Hou, G. Xiong, L. Liu, G. Li, N. Moelans, M. Guo , Scr. Mater., 177(2020), pp. 151-156. |
[32] | Y. Cao, G. Li, Y. Hou, N. Moelans, M. Guo , Phys. B, 558(2019), pp. 10-19. |
[33] | C. Liu, R.I. Revilla, D. Zhang, Z. Liu, A. Lutz, F. Zhang, T. Zhao, H. Ma, X. Li, H. Terryn , Corros. Sci., 138(2018), pp. 96-104. |
[34] | F. Cardarelli , Materials Handbook: A Concise Desktop Reference, Springer(2008). |
[35] | Y. Wang, G. Cheng, Y. Li , Corros. Sci., 111(2016), pp. 508-517. |
[36] | Y. Wang, G. Cheng, W. Wu, Y. Li , Corros. Sci., 130(2018), pp. 252-260. |
[37] | X. Cheng, Z. Jin, M. Liu, X. Li , , Corros.Sci., 115(2017), pp. 135-142. |
[38] | P. Montoya, I. Díaz, N. Granizo, D. de la Fuente, M. Morcillo, Mater. Chem. Phys., 142(2013), pp. 220-228. |
[39] | N.K. Tewary, A. Kundu, R. Nandi, J.K. Saha, S.K. Ghosh , Corros. Sci., 113(2016), pp. 57-63. |
[40] | C. Thee, L. Hao, J. Dong, X. Mu, X. Wei, X. Li, W. Ke , Corros. Sci., 78(2014), pp. 130-137. |
[41] | Z. Wang, J. Liu, L. Wu, R. Han, Y. Sun , Corros. Sci., 67(2013), pp. 1-10. |
[42] | Y. Xia, P. Liu, J. Zhang, F. Cao, J. Mater. Eng. Perform., 27(2017), pp. 202-218. |
[43] | X. Zhang, S. Yang, W. Zhang, H. Guo, X. He , Corros. Sci., 82(2014), pp. 165-172. |
[44] | M. Morcillo, I. Díaz, H. Cano, B. Chico, D. de la Fuente, Constr. Build. Mater., 213(2019), pp. 723-737. |
[45] | M. Morcillo, B. Chico, I. Díaz, H. Cano, D. de la Fuente, Corros. Sci., 77(2013), pp. 6-24. |
[46] | Y. Qian, C. Ma, D. Niu, J. Xu, M. Li , Corros. Sci., 74(2013), pp. 424-429. |
[47] | J.G. Castaño, C.A. Botero, A.H. Restrepo, E.A. Agudelo, E. Correa, F. Echeverría , Corros. Sci., 52(2010), pp. 216-223. |
[48] | H. Tao, C. Zhou, Y. Zheng, Y. Hong, J. Zheng, L. Zhang , Corros. Sci., 154(2019), pp. 268-276. |
[49] | C. Luo, X. Zhou, G.E. Thompson, A.E. Hughes , Corros. Sci., 61(2012), pp. 35-44. |
[50] | A. Atrens, J.Q. Wang, K. Stiller, H.O. Andren , Corros. Sci., 48(2006), pp. 79-92. |
[51] | Z.Y. Liu, X.G. Li, Y.F. Cheng , Electrochem. Commun., 12(2010), pp. 936-938. |
[52] | C. Liu, X. Cheng, Z. Dai, R. Liu, Z. Li, L. Cui, M. Chen, L. Ke , Materials, 11(2018), p. 2277. |
[53] | Y. Xiao, G. Wang, H. Lei, S. Sridhar, J. Alloys Compd., 813 (2020), Article 152243. |
[54] | S. Yang, Q. Wang, L. Zhang, J. Li, K. Peaslee , Metall. Mater. Trans. B, 43(2012), pp. 731-750. |
[55] | S. Yang, J. Li, Z. Wang, J. Li, L. Lin , Int. J. Miner. Metall. Mater., 18(2011), pp. 18-23. |
[56] | I. Reformatskaya, A. Podobaev, G. Florianovich, I. Ashcheulova , Prot. Met., 35(1999), pp. 4-9. |
[57] | G.S. Eklund, , J. Electrochem. Soc., 121(1974), pp. 467-473. |
[58] | G. Wranglen , Corros. Sci., 14(1974), pp. 331-349. |
[59] | H. Krawiec, V. Vignal, O. Heintz, R. Oltra , Electrochim. Acta, 51(2006), pp. 3235-3243. |
[60] | D.E. Wilhiams, T.F. Mohiuddin, Y.Y. Zhu, , J. Electrochem. Soc., 145(1998), pp. 2664-2672. |
[61] |
J. Wei, Y. Zhou, J. Dong, X. He, W. Ke, Materialia, 6 (2019), Article 100316.
DOI URL PMID |
[62] | B. Vuillemin, X. Philippe, R. Oltra, V. Vignal, L. Coudreuse, L.C. Dufour, E. Finot , SVET, Corros. Sci., 45(2003), pp. 1143-1159. |
[63] | H. Krawiec, V. Vignal, R. Oltra , Electrochem. Commun., 6(2004), pp. 655-660. |
[64] | T.Y. Jin, Y.F. Cheng , Corros. Sci., 53(2011), pp. 850-853. |
[65] | Y. Yang, T. Zhang, Y. Shao, G. Meng, F. Wang , Corros. Sci., 73(2013), pp. 250-261. |
[66] | A.H.S. Iyer, K. Stiller, G. Leijon, H.C.M. Andersson-Östling, M. Hörnqvist Colliander, Mater. Sci. Eng. A, 704(2017), pp. 440-447. |
[67] | T. Zhao, Z. Liu, C. Du, C. Dai, X. Li, B. Zhang , Mater. Sci. Eng. A, 708(2017), pp. 181-192. |
[68] | B.O. Okonkwo, H. Ming, Z. Zhang, J. Wang, E. Rahimi, S. Hosseinpour, A. Davoodi , Corros. Sci., 154(2019), pp. 49-60. |
[69] | V. Randle , Acta Mater., 46(1997), pp. 1459-1480. |
[70] | C. Liu, Z. Jiang, J. Zhao, X. Cheng, Z. Liu, D. Zhang, X. Li, Corros. Sci., 166 (2020), Article 108463. |
[1] | Yue Wang, Xin Mu, Junhua Dong, Aniefiok Joseph Umoh, Wei Ke. Insight into atmospheric corrosion evolution of mild steel in a simulated coastal atmosphere [J]. J. Mater. Sci. Technol., 2021, 76(0): 41-50. |
[2] | Haijun Su, Yuan Liu, Qun Ren, Zhonglin Shen, Haifang Liu, Di Zhao, Guangrao Fan, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Distribution control and formation mechanism of gas inclusions in directionally solidified Al2O3-Er3Al5O12-ZrO2 ternary eutectic ceramic by laser floating zone melting [J]. J. Mater. Sci. Technol., 2021, 66(0): 21-27. |
[3] | Junwei Chang, Zhenyu Wang, En-hou Han, Xinlei Liang, Gang Wang, Zuyao Yi, Na Li. Corrosion resistance of tannic acid, d-limonene and nano-ZrO2 modified epoxy coatings in acid corrosion environments [J]. J. Mater. Sci. Technol., 2021, 65(0): 137-150. |
[4] | Qiang Ren, Yuexin Zhang, Ying Ren, Lifeng Zhang, Jujin Wang, Yadong Wang. Prediction of spatial distribution of the composition of inclusions on the entire cross section of a linepipe steel continuous casting slab [J]. J. Mater. Sci. Technol., 2021, 61(0): 147-158. |
[5] | Yueming Fan, Wei Liu, Shimin Li, Thee Chowwanonthapunya, Banthukul Wongpat, Yonggang Zhao, Baojun Dong, Tianyi Zhang, Xiaogang Li. Evolution of rust layers on carbon steel and weathering steel in high humidity and heat marine atmospheric corrosion [J]. J. Mater. Sci. Technol., 2020, 39(0): 190-199. |
[6] | Mariana X. Milagre, Uyime Donatus, Naga V. Mogili, Rejane Maria P. Silva, Bárbara Victória G. de Viveiros, Victor F. Pereira, Renato A. Antunes, Caruline S.C. Machado, João Victor S. Araujo, Isolda Costa. Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding [J]. J. Mater. Sci. Technol., 2020, 45(0): 162-175. |
[7] | Shidong Wang, Lyndon Lamborn, Karina Chevil, Erwin Gamboa, Weixing Chen. Near-neutral pH corrosion of mill-scaled X-65 pipeline steel with paint primer [J]. J. Mater. Sci. Technol., 2020, 49(0): 166-178. |
[8] | Bo Liu, Xin Mu, Ying Yang, Long Hao, Xueyong Ding, Junhua Dong, Zhe Zhang, Huaxing Hou, Wei Ke. Effect of tin addition on corrosion behavior of a low-alloy steel in simulated costal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35(7): 1228-1239. |
[9] | Chaoyun Yang, Yikun Luan, Dianzhong Li, Yiyi Li. Effects of rare earth elements on inclusions and impact toughness of high-carbon chromium bearing steel [J]. J. Mater. Sci. Technol., 2019, 35(7): 1298-1308. |
[10] | Fang Xue, Xin Wei, Junhua Dong, Changgang Wang, Wei Ke. Effect of chloride ion on corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution with different dissolved oxygen concentrations [J]. J. Mater. Sci. Technol., 2019, 35(4): 596-603. |
[11] | Wenhua Xu, En-Hou Han, Zhenyu Wang. Effect of tannic acid on corrosion behavior of carbon steel in NaCl solution [J]. J. Mater. Sci. Technol., 2019, 35(1): 64-75. |
[12] | S.G. Wang, M. Sun, Y.H. Xu, K. Long, Z.D. Zhang. Enhanced localized and uniform corrosion resistances of bulk nanocrystalline 304 stainless steel in high-concentration hydrochloric acid solutions at room temperature [J]. J. Mater. Sci. Technol., 2018, 34(12): 2498-2506. |
[13] | Zhao Jing, Ren Ling, Zhang Bingchun, Cao Zhiqiang, Yang Ke. In vitro study on infectious ureteral encrustation resistance of Cu-bearing stainless steel [J]. J. Mater. Sci. Technol., 2017, 33(12): 1604-1609. |
[14] | Wenlin Mo, Shanping Lu, Dianzhong Li, Yiyi Li. Effects of Filler Metal Composition on Inclusions and Inclusion Defects for ER NiCrFe-7 Weldments [J]. J. Mater. Sci. Technol., 2013, 29(5): 458-466. |
[15] | Yanlei Zhou, Jun Chen, Yang Xu, Zhenyu Liu. Effects of Cr, Ni and Cu on the Corrosion Behavior of Low Carbon Microalloying Steel in a Cl- Containing Environment [J]. J. Mater. Sci. Technol., 2013, 29(2): 168-174. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||