J. Mater. Sci. Technol. ›› 2021, Vol. 76: 41-50.DOI: 10.1016/j.jmst.2020.11.021
• Research Article • Previous Articles Next Articles
Yue Wanga,b, Xin Mua,*(), Junhua Donga,*(), Aniefiok Joseph Umoha,b, Wei Kec
Received:
2020-07-19
Revised:
2020-09-07
Accepted:
2020-10-06
Published:
2021-06-20
Online:
2020-11-07
Contact:
Xin Mu,Junhua Dong
About author:
jhdong@imr.ac.cn(J. Dong).Yue Wang, Xin Mu, Junhua Dong, Aniefiok Joseph Umoh, Wei Ke. Insight into atmospheric corrosion evolution of mild steel in a simulated coastal atmosphere[J]. J. Mater. Sci. Technol., 2021, 76: 41-50.
Fig. 2. The fitting results of corrosion weight gain and corrosion rate of Q235 steel exposed to the simulated coastal atmosphere in the double logarithm coordinate.
The first stage | The second stage | The third stage | |
---|---|---|---|
CCT number | 1-4 | 5-35 | 40-60 |
Weight gain | y= -0.424 + 1.381x, R2 = 0.99 | y = 0.0548 + 0.646x, R2 = 0.99 | y= -0.504 + 0.995x, R2 = 0.99 |
Corrosion rate | y= -0.424 + 0.381x, R2 = 0.99 | y = 0.548-0.354x, R2 = 0.99 | y= -0.504-0.005x, R2 = 0.99 |
Table 1 Fitting functions according to the actual weight gain data and corrosion rate of the Q235 steel in two typical atmospheres.
The first stage | The second stage | The third stage | |
---|---|---|---|
CCT number | 1-4 | 5-35 | 40-60 |
Weight gain | y= -0.424 + 1.381x, R2 = 0.99 | y = 0.0548 + 0.646x, R2 = 0.99 | y= -0.504 + 0.995x, R2 = 0.99 |
Corrosion rate | y= -0.424 + 0.381x, R2 = 0.99 | y = 0.548-0.354x, R2 = 0.99 | y= -0.504-0.005x, R2 = 0.99 |
Iron oxides and hydroxides | Wavelength shifts (cm-1) | Refs. |
---|---|---|
Goethite (α-FeOOH) | 249b, 303a, 390, 476, 660 | [ |
243b, 299a, 385, 479, 550, 685 | [ | |
248b, 303a, 397, 485, 554, 680 | [ | |
Akaganeite (β-FeOOH) | 313a, 394, 722b | [ |
314, 392, 540, 723a | [ | |
Lepidocrocite (γ-FeOOH) | 250a, 343, 379, 525b, 650, 1005, 1330 | [ |
252a, 378, 680, 1310 | [ | |
255a, 380, 528, 654, 1370 | [ | |
Magnetite (Fe3O4) | 532, 667a | [ |
673 | [ |
Table 2 Raman shifts (cm-1) for common iron oxides and hydroxides according to different workers.
Iron oxides and hydroxides | Wavelength shifts (cm-1) | Refs. |
---|---|---|
Goethite (α-FeOOH) | 249b, 303a, 390, 476, 660 | [ |
243b, 299a, 385, 479, 550, 685 | [ | |
248b, 303a, 397, 485, 554, 680 | [ | |
Akaganeite (β-FeOOH) | 313a, 394, 722b | [ |
314, 392, 540, 723a | [ | |
Lepidocrocite (γ-FeOOH) | 250a, 343, 379, 525b, 650, 1005, 1330 | [ |
252a, 378, 680, 1310 | [ | |
255a, 380, 528, 654, 1370 | [ | |
Magnetite (Fe3O4) | 532, 667a | [ |
673 | [ |
Color | 1CCT | 3CCT | 5CCT | 7CCT | 10CCT |
---|---|---|---|---|---|
Dark brown | M,A | M | L,G, M,A | L | L |
Yellow | L | L,M | L,A(t) | L,A(t) | L |
Table 3 The composition of the rust on the surface of the corroded sample (L-Lepidocrocite; A-Akaganeite; G-Goethite; M-Magnetite; t-trace).
Color | 1CCT | 3CCT | 5CCT | 7CCT | 10CCT |
---|---|---|---|---|---|
Dark brown | M,A | M | L,G, M,A | L | L |
Yellow | L | L,M | L,A(t) | L,A(t) | L |
Inner layer | Outer layer | ||||||||
---|---|---|---|---|---|---|---|---|---|
Location | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
5 CCT | M,A | M,A | M,A | M,A | M,A, L | M,A, G,L | A,G, L | L | - |
15 CCT | M,A | M,A | M,A | M,A | M,A, G | M,A | M,A G(t),L | M,A, G(t),L | L |
40CCT | M,A G(t) | M,A G(t) | M,A G(t) | M,A G | M,A, G(t) | M,A G | L | -- | - |
60 CCT | M,A G | M,A G | M,A G | M,A G | M,A G | M,A G | L | -- | -- |
Table 4 The composition of the rust layer in the depth direction (L-Lepidocrocite; A-Akaganeite; G-Goethite; M-Magnetite; t-trace).
Inner layer | Outer layer | ||||||||
---|---|---|---|---|---|---|---|---|---|
Location | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
5 CCT | M,A | M,A | M,A | M,A | M,A, L | M,A, G,L | A,G, L | L | - |
15 CCT | M,A | M,A | M,A | M,A | M,A, G | M,A | M,A G(t),L | M,A, G(t),L | L |
40CCT | M,A G(t) | M,A G(t) | M,A G(t) | M,A G | M,A, G(t) | M,A G | L | -- | - |
60 CCT | M,A G | M,A G | M,A G | M,A G | M,A G | M,A G | L | -- | -- |
CCT cycle (N) | Ecorr (V vs. SCE) | icorr (×10-6 A/cm2) | βa (×10-3 V/dec) | βc (×10-3 V/dec) |
---|---|---|---|---|
0 | -0.636 | 19.37 | 118.1 | -- |
1 | -0.702 | 47.35 | 87.55 | 158.6 |
3 | -0.701 | 100 | 77.63 | 76.36 |
5 | -0.695 | 68.8 | 331.8 | 71.29 |
7 | -0.673 | 54.66 | 529.3 | 71.39 |
10 | -0.619 | 12.02 | 594.2 | 77.36 |
20 | -0.583 | 6.68 | 679.9 | 95.38 |
30 | -0.596 | 6.84 | 693 | 95.96 |
40 | -0.535 | 5.36 | 708 | 94.1 |
50 | -0.550 | 9.81 | 490.7 | 84.8 |
60 | -0.593 | 8.32 | 565 | 100 |
Table 5 Electrochemical parameters obtained from the fitting of polarization curves at different CCT cycles.
CCT cycle (N) | Ecorr (V vs. SCE) | icorr (×10-6 A/cm2) | βa (×10-3 V/dec) | βc (×10-3 V/dec) |
---|---|---|---|---|
0 | -0.636 | 19.37 | 118.1 | -- |
1 | -0.702 | 47.35 | 87.55 | 158.6 |
3 | -0.701 | 100 | 77.63 | 76.36 |
5 | -0.695 | 68.8 | 331.8 | 71.29 |
7 | -0.673 | 54.66 | 529.3 | 71.39 |
10 | -0.619 | 12.02 | 594.2 | 77.36 |
20 | -0.583 | 6.68 | 679.9 | 95.38 |
30 | -0.596 | 6.84 | 693 | 95.96 |
40 | -0.535 | 5.36 | 708 | 94.1 |
50 | -0.550 | 9.81 | 490.7 | 84.8 |
60 | -0.593 | 8.32 | 565 | 100 |
CCT test | Rs | QO (mS sn cm-2) | RO | Yw-O | Qi (mS sn cm-2) | Ri | ||
---|---|---|---|---|---|---|---|---|
(Ω cm2) | Y | n | (Ω cm2) | mS sn cm-2 | Y | n | (Ω cm2) | |
0 | 50.9 | 0.0049 | 0.5329 | 31.55 | 0.01031 | 0.00086 | 0.8525 | 944.3 |
Table 6 Fitting results of EIS data of rusted Q235 steel sample at 0 CCT.
CCT test | Rs | QO (mS sn cm-2) | RO | Yw-O | Qi (mS sn cm-2) | Ri | ||
---|---|---|---|---|---|---|---|---|
(Ω cm2) | Y | n | (Ω cm2) | mS sn cm-2 | Y | n | (Ω cm2) | |
0 | 50.9 | 0.0049 | 0.5329 | 31.55 | 0.01031 | 0.00086 | 0.8525 | 944.3 |
CCT test | Rs | QO (mS sn cm-2) | RO | Yw-O | Qr (mS sn cm-2) | Rr | Qi (mS sn cm-2) | Ri | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(Ω cm2) | Y | n | (Ω cm2) | mS sn cm-2 | Y | n | (Ω cm2) | Y | n | (Ω cm2) | ||
1 | 34.91 | 0.02223 | 0.6987 | 60.02 | 0.02142 | 0.0110 | 0.3179 | 237.6 | 0.00923 | 0.8216 | 789.7 | |
3 | 58.63 | 0.02279 | 0.3688 | 267.5 | 0.00903 | 0.02164 | 0.4283 | 45.23 | 0.06882 | 0.8147 | 617.2 |
Table 7 Fitting results of EIS data of rusted Q235 steel samples at 1 CCT and 3 CCT.
CCT test | Rs | QO (mS sn cm-2) | RO | Yw-O | Qr (mS sn cm-2) | Rr | Qi (mS sn cm-2) | Ri | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(Ω cm2) | Y | n | (Ω cm2) | mS sn cm-2 | Y | n | (Ω cm2) | Y | n | (Ω cm2) | ||
1 | 34.91 | 0.02223 | 0.6987 | 60.02 | 0.02142 | 0.0110 | 0.3179 | 237.6 | 0.00923 | 0.8216 | 789.7 | |
3 | 58.63 | 0.02279 | 0.3688 | 267.5 | 0.00903 | 0.02164 | 0.4283 | 45.23 | 0.06882 | 0.8147 | 617.2 |
CCT test | Qhf (mS sn cm-2) | Rs | Qr (mS sn cm-2) | Rr | Qi (mS sn cm-2) | Ri | ||||
---|---|---|---|---|---|---|---|---|---|---|
Y | n | (Ω cm2) | Y | n | (Ω cm2) | Y | n | (Ω cm2) | ||
5 | 4.101 × 10-9 | 0.9505 | 52.95 | 0.03901 | 0.394 | 79.56 | 0.1459 | 0.7722 | 989.8 | |
10 | 7.161 × 10-9 | 0.9317 | 72.84 | 0.03551 | 0.182 | 91 | 0.03473 | 0.5975 | 1185 | |
20 | 1.388 × 10-7 | 0.6956 | 76.41 | 0.04099 | 0.1256 | 105.2 | 0.0225 | 0.5724 | 1518 | |
40 | 4.931 × 10-6 | 0.4291 | 133.2 | 0.01935 | 0.1499 | 145.3 | 0.01141 | 0.5469 | 2550 | |
60 | 1.35 × 10-6 | 0.5492 | 105 | 0.01824 | 0.1541 | 132 | 0.01834 | 0.5526 | 1998 |
Table 8 Fitting results of EIS data of rusted Q235 steel samples at 5 CCT to 60 CCT.
CCT test | Qhf (mS sn cm-2) | Rs | Qr (mS sn cm-2) | Rr | Qi (mS sn cm-2) | Ri | ||||
---|---|---|---|---|---|---|---|---|---|---|
Y | n | (Ω cm2) | Y | n | (Ω cm2) | Y | n | (Ω cm2) | ||
5 | 4.101 × 10-9 | 0.9505 | 52.95 | 0.03901 | 0.394 | 79.56 | 0.1459 | 0.7722 | 989.8 | |
10 | 7.161 × 10-9 | 0.9317 | 72.84 | 0.03551 | 0.182 | 91 | 0.03473 | 0.5975 | 1185 | |
20 | 1.388 × 10-7 | 0.6956 | 76.41 | 0.04099 | 0.1256 | 105.2 | 0.0225 | 0.5724 | 1518 | |
40 | 4.931 × 10-6 | 0.4291 | 133.2 | 0.01935 | 0.1499 | 145.3 | 0.01141 | 0.5469 | 2550 | |
60 | 1.35 × 10-6 | 0.5492 | 105 | 0.01824 | 0.1541 | 132 | 0.01834 | 0.5526 | 1998 |
[1] |
T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, H. Uchida, Corros. Sci., 48 (2006), pp. 2799-2812
DOI URL |
[2] |
Y.T. Ma, Y. Li, F.H. Wang, Corros. Sci., 52 (2010), pp. 1796-1800
DOI URL |
[3] |
I.M. Allam, J.S. Arlow, H. Saricimen, Corros. Sci., 32 (1991), pp. 417-432
DOI URL |
[4] |
J. Alcántara, B. Chico, I. Díaz, D. de la Fuente, M. Morcillo, Corros. Sci., 97 (2015), pp. 74-88
DOI URL |
[5] |
W. Han, G.C. Yu, Z.Y. Wang, J. Wang, Corros. Sci., 49 (2007), pp. 2920-2935
DOI URL |
[6] |
T. Misawa, K. Asami, K. Hashimoto, S. Shimodaira, Corros. Sci., 14 (1974), pp. 279-289
DOI URL |
[7] |
S. Oesch, Corros. Sci., 38 (1996), pp. 1357-1368
DOI URL |
[8] |
L. Hao, S.X. Zhang, J.H. Dong, W. Ke, Corros. Sci., 59 (2012), pp. 270-276
DOI URL |
[9] | B. Liu, X. Mu, Y. Yang, L. Hao, X.Y. Ding, J.H. Dong, Z. Zhang, H.X. Hou, Wei Ke, J.Mater. Sci. Technol., 35 (2019), pp. 1228-1239 |
[10] |
D. de la Fuente, I. Díaz, J. Simancas, B. Chico, M. Morcillo, Corros. Sci., 53 (2011), pp. 604-617
DOI URL |
[11] |
M. Natesan, G. Venkatachari, N. Palaniswamy, Corros. Sci., 48 (2006), pp. 3584-3608
DOI URL |
[12] | J.H. Dong, W. Ke, TMS (The Minerals,Metals & Materials Society) (2013) |
[13] |
J.H. Wang, F.I. Wei, Y.S. Chang, H.C. Shih, Mater. Chem. Phys., 47 (1997), pp. 1-8
DOI URL |
[14] |
L. Hao, S.X. Zhang, J.H. Dong, W. Ke, Corros. Sci., 58 (2012), pp. 175-180
DOI URL |
[15] |
L. Hao, S.X. Zhang, J.H. Dong, W. Ke, Corros. Sci., 53 (2011), pp. 4187-4192
DOI URL |
[16] |
M.B. Leban, T. Kosec, Eng. Failure Anal., 79 (2017), pp. 940-950
DOI URL |
[17] |
R.J. Thibeau, C.W. Brown, R.H. Heidersbach, Appl. Spectrosc., 32 (1978), pp. 532-535
DOI URL |
[18] | Y. Waseda, S. Suzuki, Characterization of Corrosion Products on Steel Surfaces, Springer, Berlin Heidelberg (2005), pp. 159-163 |
[19] | K. Xiao, C.F. Dong, X.G. Li, F.M. Wang, J. Iron Steel Res. Int., 15 (2008), pp. 42-48 |
[20] |
H. Cano, D. Neff, M. Morcillo, P. Dillmann, I. Diaz, D. de la Fuente, Corros. Sci., 87 (2014), pp. 438-451
DOI URL |
[21] |
Z.F. Wang, J.R. Liu, L.X. Wu, R.D. Han, Y.Q. Sun, Corros. Sci., 67 (2013), pp. 1-10
DOI URL |
[22] |
U.R. Evans, C.A.J. Taylor, Corros. Sci., 12 (1972), pp. 227-246
DOI URL |
[23] |
J. Monnier, E. Burger, P. Berger, D. Neff, I. Guillot, P. Dillmann, Corros. Sci., 53 (2011), pp. 2468-2473
DOI URL |
[24] |
E. Rocca, H. Faiz, P. Dillmann, D. Neff, F. Mirambet, Electrochim. Acta, 316 (2019), pp. 219-227
DOI URL |
[25] |
T. Ishikawa, K. Takeuchi, K. Kandori, T. Nakayama, Colloids Surf. A Physicochem. Eng. Asp., 266 (2005), pp. 155-159
DOI URL |
[26] |
C. Rémazeilles, M. Saheb, D. Neff, E. Guilminot, K. Tran, J.A. Bourdoiseau, R. Sabot, M. Jeannin, H. Matthiesen, P. Dillmann, P. Refait, J. Raman Spectrosc., 41 (2010), pp. 1425-1433
DOI URL |
[27] |
S.J. Oh, D.C. Cook, H.E. Townsend, Hyperfine Interact., 112 (1998), pp. 59-66
DOI URL |
[28] |
J. Monnier, L.B. Gurlet, D. Baron, D. Neff, I. Guillot, P. Dillmann, J. Raman Spectrosc., 42 (2011), pp. 773-781
DOI URL |
[29] |
X.H. Chen, J.H. Dong, E.H. Han, W. Ke, Mater. Lett., 61 (2007), pp. 4050-4053
DOI URL |
[30] |
C. Qiao, L.F. Shen, L. Hao, X. Mu, J.H. Dong, W. Ke, J. Liu, B. Liu, J. Mater. Sci. Technol., 35 (2019), pp. 2345-2356
DOI URL |
[31] |
S.X. Li, L.H. Hihara, J. Electrochem. Soc., 159 (2012), p. C147
DOI URL |
[32] |
D.L.A. de Faria, S.V. Silva, M.T. de Oliveira, J. Raman Spectrosc., 28 (1997), pp. 873-878
DOI URL |
[33] |
S. Réguer, P. Dillmann, F. Mirambet, Corros. Sci., 49 (2007), pp. 2726-2744
DOI URL |
[34] |
T. Ohtsuka, S. Tanaka, J. Solid State Electrochem., 19 (2015), pp. 3559-3566
DOI URL |
[35] |
D. Neff, L.B. Gurlet, P. Dillmann, S. Reguer, L. Legrand, J. Raman Spectrosc., 37 (2006), pp. 1228-1237
DOI URL |
[36] |
J. Dünnwald, A. Otto, Corros. Sci., 29 (1989), pp. 1167-1176
DOI URL |
[37] |
B. Lin, R.G. Hu, C.Q. Ye, Y. Li, C.J. Lin, Electrochim. Acta, 55 (2010), pp. 6542-6545
DOI URL |
[38] |
U.R. Evans, Chem. Soc., 21 (1967), pp. 29-42
DOI URL |
[39] |
M. Stratmann, K. Bohnenkamp, H.J. Engell, Corros. Sci., 23 (1983), pp. 969-985
DOI URL |
[40] |
J.T. Keiser, C.W. Brown, R.H. Heidersbach, J. Electrochem. Soc., 129 (1982), pp. 2686-2689
DOI URL |
[41] |
H. Antony, L. Legrand, L. Maréchal, S. Perrin, P. Dillmann, A. Chaussé, Electrochim. Acta, 51 (2005), pp. 745-753
DOI URL |
[42] |
H. Antony, S. Perrin, P. Dillmann, L. Legrand, A. Chaussé, Electrochim. Acta, 52 (2007), pp. 7754-7759
DOI URL |
[43] |
H. Tanaka, R. Mishima, N. Hatanaka, T. Ishikawa, T. Nakayama, Corros. Sci., 78 (2014), pp. 384-387
DOI URL |
[44] |
F. Mansfeld, S. Lin, Y.C. Chen, H. Shih, J. Electrochem. Soc., 135 (1988), pp. 906-907
DOI URL |
[45] |
S.X. Li, L.H. Hihara, Electrochem. commun., 18 (2012), pp. 48-50
DOI URL |
[46] |
U.R. Evans, Corros. Sci., 9 (1969), pp. 813-821
DOI URL |
[47] |
Y.T. Ma, Y. Li, F.H. Wang, Corros. Sci., 51 (2009), pp. 997-1006
DOI URL |
[48] |
T. Misawa, Corros. Sci., 13 (1973), pp. 659-676
DOI URL |
[1] | Gaopeng Xu, Kui Wang, Xianping Dong, Lei Yang, Mahmoud Ebrahimi, Haiyan Jiang, Qudong Wang, Wenjiang Ding. Review on corrosion resistance of mild steels in liquid aluminum [J]. J. Mater. Sci. Technol., 2021, 71(0): 12-22. |
[2] | Fandi Meng, Li Liu, Yu Cui, Fuhui Wang. Evaluation of coating resistivity for pigmented/unpigmented epoxy coatings under marine alternating hydrostatic pressure [J]. J. Mater. Sci. Technol., 2021, 64(0): 165-175. |
[3] | Ini-Ibehe Nabuk Etim, Junhua Dong, Jie Wei, Chen Nan, Durga Bhakta Pokharel, Aniefiok Joseph Umoh, Dake Xu, Mingzhong Su, Wei Ke. Effect of organic silicon quaternary ammonium salts on mitigating corrosion of reinforced steel induced by SRB in mild alkaline simulated concrete pore solution [J]. J. Mater. Sci. Technol., 2021, 64(0): 126-140. |
[4] | Changhong Cai, Marta M. Alves, Renbo Song, Yongjin Wang, Jingyuan Li, M. Fátima Montemor. Non-destructive corrosion study on a magnesium alloy with mechanical properties tailored for biodegradable cardiovascular stent applications [J]. J. Mater. Sci. Technol., 2021, 66(0): 128-138. |
[5] | Durga Bhakta Pokharel, Liping Wu, Junhua Dong, Xin Wei, Ini-Ibehe Nabuk Etim, Dhruba Babu Subedi, Aniefiok Joseph Umoh, Wei Ke. Effect of D-fructose on the in-vitro corrosion behavior of AZ31 magnesium alloy in simulated body fluid [J]. J. Mater. Sci. Technol., 2021, 66(0): 202-212. |
[6] | Swadipta Roy, C.V. Ramana. Effect of sintering temperature on the chemical bonding, electronic structure and electrical transport properties of β-Ga1.9Fe0.1O3 compounds [J]. J. Mater. Sci. Technol., 2021, 67(0): 135-144. |
[7] | Dequan Wu, Lingwei Ma, Bei Liu, Dawei Zhang, Badar Minhas, Hongchang Qian, Herman A. Terryn, Johannes M.C.Mol. Long-term deterioration of lubricant-infused nanoporous anodic aluminium oxide surface immersed in NaCl solution [J]. J. Mater. Sci. Technol., 2021, 64(0): 57-65. |
[8] | Yanhua Zeng, Fenfen Yang, Zongning Chen, Enyu Guo, Minqiang Gao, Xuejian Wang, Huijun Kang, Tongmin Wang. Enhancing mechanical properties and corrosion resistance of nickel-aluminum bronze via hot rolling process [J]. J. Mater. Sci. Technol., 2021, 61(0): 186-196. |
[9] | Mingna Wang, Chuang Qiao, Xiaolin Jiang, Long Hao, Xiahe Liu. Microstructure induced galvanic corrosion evolution of SAC305 solder alloys in simulated marine atmosphere [J]. J. Mater. Sci. Technol., 2020, 51(0): 40-53. |
[10] | Jiaxin Zhang, Jinshan Zhang, Fuyin Han, Wei Liu, Longlong Zhang, Rui Zhao, Chunxiang Xu, Jing Dou. Modification of Mn on corrosion and mechanical behavior of biodegradable Mg88Y4Zn2Li5 alloy with long-period stacking ordered structure [J]. J. Mater. Sci. Technol., 2020, 42(0): 130-142. |
[11] | Guangyu Liu, Shohreh Khorsand, Shouxun Ji. Electrochemical corrosion behaviour of Sn-Zn-xBi alloys used for miniature detonating cords [J]. J. Mater. Sci. Technol., 2019, 35(8): 1618-1628. |
[12] | Bo Liu, Xin Mu, Ying Yang, Long Hao, Xueyong Ding, Junhua Dong, Zhe Zhang, Huaxing Hou, Wei Ke. Effect of tin addition on corrosion behavior of a low-alloy steel in simulated costal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35(7): 1228-1239. |
[13] | Xuehui Hao, Junhua Dong, Xin Mu, Jie Wei, Changgang Wang, Wei Ke. Influence of Sn and Mo on corrosion behavior of ferrite-pearlite steel in the simulated bottom plate environment of cargo oil tank [J]. J. Mater. Sci. Technol., 2019, 35(5): 799-811. |
[14] | Min Cao, Li Liu, Zhongfen Yu, Lei Fan, Ying Li, Fuhui Wang. Electrochemical corrosion behavior of 2A02 Al alloy under an accelerated simulation marine atmospheric environment [J]. J. Mater. Sci. Technol., 2019, 35(4): 651-659. |
[15] | Chuang Qiao, Lianfeng Shen, Long Hao, Xin Mu, Junhua Dong, Wei Ke, Jing Liu, Bo Liu. Corrosion kinetics and patina evolution of galvanized steel in a simulated coastal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35(10): 2345-2356. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||