J. Mater. Sci. Technol. ›› 2021, Vol. 64: 126-140.DOI: 10.1016/j.jmst.2019.10.006
• Research Article • Previous Articles Next Articles
Ini-Ibehe Nabuk Etima,b,c, Junhua Donga,*(), Jie Weia,*(
), Chen Nana, Durga Bhakta Pokharela, Aniefiok Joseph Umoha, Dake Xud, Mingzhong Sue, Wei Kea
Received:
2019-06-22
Accepted:
2019-08-24
Published:
2021-02-20
Online:
2021-03-15
Contact:
Junhua Dong,Jie Wei
About author:
jwei@imr.ac.cn (J. Wei).Ini-Ibehe Nabuk Etim, Junhua Dong, Jie Wei, Chen Nan, Durga Bhakta Pokharel, Aniefiok Joseph Umoh, Dake Xu, Mingzhong Su, Wei Ke. Effect of organic silicon quaternary ammonium salts on mitigating corrosion of reinforced steel induced by SRB in mild alkaline simulated concrete pore solution[J]. J. Mater. Sci. Technol., 2021, 64: 126-140.
Medium | Description | Composition |
---|---|---|
STR | Sterilized SCP | 250 mL SCP |
STR + OSA | Sterilized SCP with OSA | 250 mL SCP +420 ppb OSA |
STR + SRB | Sterilized SCP with SRB | 220 mL SCP +30 mL SRB |
STR + SRB + OSA | Sterilized SCP with SRB and OSA | 220 mL SCP +30 mL SRB +420 ppb OSA |
Table 1 Compositions of the media used for the corrosion tests.
Medium | Description | Composition |
---|---|---|
STR | Sterilized SCP | 250 mL SCP |
STR + OSA | Sterilized SCP with OSA | 250 mL SCP +420 ppb OSA |
STR + SRB | Sterilized SCP with SRB | 220 mL SCP +30 mL SRB |
STR + SRB + OSA | Sterilized SCP with SRB and OSA | 220 mL SCP +30 mL SRB +420 ppb OSA |
Fig. 3. SEM images and EDX analysis of 20SiMn steel samples after 3 days of immersion in (a, a') STR; (b, b') STR + OSA; (c, c') STR + SRB and (d, d') STR + SRB + OSA.
Fig. 4. SEM images and EDX analysis of 20SiMn steel samples after 14 days of immersion in (a, a') STR; (b, b') STR + OSA; (c, c') STR + SRB and (d, d') STR + SRB + OSA.
Fig. 5. SEM images and EDX analysis of 20SiMn steel samples after 28 days of immersion in (a, a') STR; (b, b') STR + OSA; (c, c') STR + SRB and (d, d') STR + SRB + OSA.
STR | STR + OSA | STR + SRB | STR + SRB + OSA | ||
---|---|---|---|---|---|
After 3 days period | Largest pit depth (μm) | 0.51 | 0.58 | 7.52 | 4.40 |
Average pit depth (μm) | 0.46 ± 0.07 | 0.55 ± 0.03 | 7.26 ± 0.36 | 3.77 ± 0.88 | |
After 14 days period | Largest pit depth (μm) | 0.82 | 0.96 | 11.16 | 7.54 |
Average pit depth (μm) | 0.56 ± 0.36 | 0.85 ± 0.14 | 10.64 ± 0.73 | 7.32 ± 0.30 | |
After 28 days period | Largest pit depth (μm) | 0.91 | 1.45 | 36.70 | 3.31 |
Average pit depth (μm) | 0.78 ± 0.18 | 1.15 ± 0.41 | 31.78 ± 6.95 | 2.67 ± 0.89 |
Table 2 Pit depths of 20SiMn steel samples after immersion in STR, STR + OSA, STR + SRB and STR + SRB + OSA media for 3, 14 and 28 days.
STR | STR + OSA | STR + SRB | STR + SRB + OSA | ||
---|---|---|---|---|---|
After 3 days period | Largest pit depth (μm) | 0.51 | 0.58 | 7.52 | 4.40 |
Average pit depth (μm) | 0.46 ± 0.07 | 0.55 ± 0.03 | 7.26 ± 0.36 | 3.77 ± 0.88 | |
After 14 days period | Largest pit depth (μm) | 0.82 | 0.96 | 11.16 | 7.54 |
Average pit depth (μm) | 0.56 ± 0.36 | 0.85 ± 0.14 | 10.64 ± 0.73 | 7.32 ± 0.30 | |
After 28 days period | Largest pit depth (μm) | 0.91 | 1.45 | 36.70 | 3.31 |
Average pit depth (μm) | 0.78 ± 0.18 | 1.15 ± 0.41 | 31.78 ± 6.95 | 2.67 ± 0.89 |
Fig. 9. Corrosion rate from weight loss measurements after 1, 3, 7, 14 and 28 days in STR, STR + OSA, STR + SRB and STR + SRB + OSA media (a), effect of SRB in STR and STR + OSA media (b), effect of OSA in STR and STR + SRB media respectively (c), variation of pH (d).
Fig. 11. High resolution XPS spectra of C1s (a), Fe2p (b), S2p (c) for steel samples in STR, STR + OSA, STR + SRB and STR + SRB + OSA media after 28 days.
Atomic concentration (at.%) | ||||||
---|---|---|---|---|---|---|
Medium | C | O | S | Fe | Si | Mn |
STR | 14.62 | 50.95 | - | 17.10 | 16.50 | 0.83 |
STR + OSA | 11.11 | 52.81 | - | 20.07 | 15.34 | 0.67 |
STR + SRB | 25.12 | 46.19 | 5.22 | 14.51 | 8.96 | - |
STR + SRB + OSA | 35.47 | 33.58 | 3.78 | 21.21 | 5.96 | - |
Table 3 The RACE of 20SiMn steel surfaces after immersion in STR, STR + OSA, STR + SRB and STR + SRB + OSA media for 28 days measured by XPS.
Atomic concentration (at.%) | ||||||
---|---|---|---|---|---|---|
Medium | C | O | S | Fe | Si | Mn |
STR | 14.62 | 50.95 | - | 17.10 | 16.50 | 0.83 |
STR + OSA | 11.11 | 52.81 | - | 20.07 | 15.34 | 0.67 |
STR + SRB | 25.12 | 46.19 | 5.22 | 14.51 | 8.96 | - |
STR + SRB + OSA | 35.47 | 33.58 | 3.78 | 21.21 | 5.96 | - |
Medium | Ecorr (V vs SCE) | βa (V/dec) | βc (V/dec) | icorr (μA/cm2) |
---|---|---|---|---|
STR | -0.26 | 0.075 | -0.082 | 0.02 |
STR + OSA | -0.34 | 0.069 | -0.074 | 0.09 |
STR + SRB | -0.89 | 0.058 | -0.057 | 1.96 |
STR + SRB + OSA | -0.81 | 0.061 | -0.071 | 0.69 |
Table 4 Electrochemical parameters fitted from potentiodynamic polarization curves of 20SiMn steel in different media after 28 days of immersion.
Medium | Ecorr (V vs SCE) | βa (V/dec) | βc (V/dec) | icorr (μA/cm2) |
---|---|---|---|---|
STR | -0.26 | 0.075 | -0.082 | 0.02 |
STR + OSA | -0.34 | 0.069 | -0.074 | 0.09 |
STR + SRB | -0.89 | 0.058 | -0.057 | 1.96 |
STR + SRB + OSA | -0.81 | 0.061 | -0.071 | 0.69 |
Fig. 14. Nyquist and Bode plots for the steel samples immersed after 1, 3, 7, 14 and 28 days in different media: STR (a-a”), STR + OSA (b-b”), STR + SRB (c-c”) and STR + SRB + OSA (d-d'), respectively.
Fig. 15. Three physical models and their related equivalent circuits used for fitting impedance spectra of 20SiMn steel samples immersed in (a) STR, (b) STR + OSA, (c) STR + SRB and STR + SRB + OSA media.
Time (days) | Rs (Ω cm2) | Qf (Ω-1 cm-2 s-n) | nf | Rf (Ω cm2) | Qdl (Ω-1 cm-2 s-n) | ndl | Rct (Ω cm2) |
---|---|---|---|---|---|---|---|
1 | 30.41 ± 0.10 | 1.76E-4 ± 1.40E-5 | 0.93 ± 0.008 | 6.58E4 ± 1.00E3 | 1.81E-4 ± 4.85E-6 | 0.91 ± 0.002 | 8.40E3 ± 2.60E2 |
3 | 28.20 ± 0.08 | 1.61E-4 ± 5.77E-7 | 0.92 ± 0.001 | 5.49E4 ± 1.14E3 | 1.59E-4 ± 1.17E-6 | 0.92 ± 0.001 | 7.19E3 ± 1.65E2 |
7 | 29.72 ± 0.02 | 4.32E-4 ± 1.21E-4 | 0.85 ± 0.004 | 7.97E4 ± 7.48E2 | 3.62E-4 ± 1.21E-4 | 0.86 ± 0.004 | 6.06E3 ± 5.50E1 |
14 | 31.61 ± 0.02 | 5.02E-4 ± 1.16E-4 | 0.83 ± 0.002 | 4.11E4 ± 7.03E3 | 4.37E-4 ± 1.15E-5 | 0.86 ± 0.003 | 5.69E3 ± 0.77E1 |
28 | 34.43 ± 0.07 | 1.12E-3 ± 1.08E-4 | 0.82 ± 0.005 | 1.42E4 ± 3.95E2 | 7.85E-4 ± 3.27E-5 | 0.88 ± 0.008 | 5.04E3 ± 0.59E1 |
Table 5 Simulated parameters achieved by fitting results of measured EIS data in STR medium (standard deviation shown for 3 independent samples).
Time (days) | Rs (Ω cm2) | Qf (Ω-1 cm-2 s-n) | nf | Rf (Ω cm2) | Qdl (Ω-1 cm-2 s-n) | ndl | Rct (Ω cm2) |
---|---|---|---|---|---|---|---|
1 | 30.41 ± 0.10 | 1.76E-4 ± 1.40E-5 | 0.93 ± 0.008 | 6.58E4 ± 1.00E3 | 1.81E-4 ± 4.85E-6 | 0.91 ± 0.002 | 8.40E3 ± 2.60E2 |
3 | 28.20 ± 0.08 | 1.61E-4 ± 5.77E-7 | 0.92 ± 0.001 | 5.49E4 ± 1.14E3 | 1.59E-4 ± 1.17E-6 | 0.92 ± 0.001 | 7.19E3 ± 1.65E2 |
7 | 29.72 ± 0.02 | 4.32E-4 ± 1.21E-4 | 0.85 ± 0.004 | 7.97E4 ± 7.48E2 | 3.62E-4 ± 1.21E-4 | 0.86 ± 0.004 | 6.06E3 ± 5.50E1 |
14 | 31.61 ± 0.02 | 5.02E-4 ± 1.16E-4 | 0.83 ± 0.002 | 4.11E4 ± 7.03E3 | 4.37E-4 ± 1.15E-5 | 0.86 ± 0.003 | 5.69E3 ± 0.77E1 |
28 | 34.43 ± 0.07 | 1.12E-3 ± 1.08E-4 | 0.82 ± 0.005 | 1.42E4 ± 3.95E2 | 7.85E-4 ± 3.27E-5 | 0.88 ± 0.008 | 5.04E3 ± 0.59E1 |
Time (days) | Rs (Ω cm2) | Qf (Ω-1 cm-2 s-n) | nf | Rf (Ω cm2) | Qdl (Ω-1 cm-2 s-n) | ndl | Rct (Ω cm2) |
---|---|---|---|---|---|---|---|
1 | 22.86 ± 0.39 | 6.06E-4 ± 1.00E-5 | 0.69 ± 0.004 | 4.43E4 ± 1.02E3 | 2.37E-4 ± 2.88E-4 | 0.92 ± 0.003 | 4.97E3 ± 0.98E1 |
3 | 32.73 ± 0.36 | 5.43E-4 ± 1.01E-4 | 0.68 ± 0.001 | 5.74E4 ± 1.50E3 | 6.89E-4 ± 2.23E-4 | 0.82 ± 0.014 | 3.54E3 ± 2.99E2 |
7 | 27.85 ± 0.32 | 8.86E-4 ± 9.19E-5 | 0.66 ± 0.028 | 4.49E4 ± 1.03E3 | 1.14E-3 ± 1.67E-4 | 0.85 ± 0.008 | 1.99E3 ± 3.26E2 |
14 | 34.93 ± 1.45 | 4.94E-4 ± 1.82E-5 | 0.65 ± 0.017 | 3.28E4 ± 1.13E2 | 1.91E-3 ± 1.76E-4 | 0.76 ± 0.031 | 1.68E3 ± 6.26E1 |
28 | 51.85 ± 0.62 | 1.82E-4 ± 4.26E-5 | 0.60 ± 0.007 | 1.14E4 ± 1.36E2 | 9.29E-4 ± 8.07E-5 | 0.70 ± 0.008 | 1.55E3 ± 5.16E1 |
Table 6 Simulated parameters achieved by fitting results of measured EIS data in STR + OSA medium (standard deviation shown for 3 independent samples).
Time (days) | Rs (Ω cm2) | Qf (Ω-1 cm-2 s-n) | nf | Rf (Ω cm2) | Qdl (Ω-1 cm-2 s-n) | ndl | Rct (Ω cm2) |
---|---|---|---|---|---|---|---|
1 | 22.86 ± 0.39 | 6.06E-4 ± 1.00E-5 | 0.69 ± 0.004 | 4.43E4 ± 1.02E3 | 2.37E-4 ± 2.88E-4 | 0.92 ± 0.003 | 4.97E3 ± 0.98E1 |
3 | 32.73 ± 0.36 | 5.43E-4 ± 1.01E-4 | 0.68 ± 0.001 | 5.74E4 ± 1.50E3 | 6.89E-4 ± 2.23E-4 | 0.82 ± 0.014 | 3.54E3 ± 2.99E2 |
7 | 27.85 ± 0.32 | 8.86E-4 ± 9.19E-5 | 0.66 ± 0.028 | 4.49E4 ± 1.03E3 | 1.14E-3 ± 1.67E-4 | 0.85 ± 0.008 | 1.99E3 ± 3.26E2 |
14 | 34.93 ± 1.45 | 4.94E-4 ± 1.82E-5 | 0.65 ± 0.017 | 3.28E4 ± 1.13E2 | 1.91E-3 ± 1.76E-4 | 0.76 ± 0.031 | 1.68E3 ± 6.26E1 |
28 | 51.85 ± 0.62 | 1.82E-4 ± 4.26E-5 | 0.60 ± 0.007 | 1.14E4 ± 1.36E2 | 9.29E-4 ± 8.07E-5 | 0.70 ± 0.008 | 1.55E3 ± 5.16E1 |
Time (days) | Rs (Ω cm2) | Qb (Ω-1 cm-2 s-n) | nb | Rb (Ω cm2) | Qdl (Ω-1 cm-2 s-n) | ndl | Rct (Ω cm2) |
---|---|---|---|---|---|---|---|
1 | 32.83 ± 0.12 | 0.93E-2 ± 2.50E-4 | 0.64 ± 1.3E-3 | 7.51E3 ± 2.23E2 | 4.84E-4 ± 1.59E-5 | 0.97 ± 0.001 | 9.22E2 ± 1.02E1 |
3 | 29.30 ± 0.02 | 2.56E-2 ± 2.10E-4 | 0.57 ± 0.4E-3 | 5.59E3 ± 1.16E2 | 1.18E-3 ± 0.91E-5 | 0.96 ± 0.013 | 7.80E2 ± 0.41E1 |
7 | 35.99 ± 0.22 | 2.88E-2 ± 8.02E-4 | 0.54 ± 3.8E-3 | 5.33E3 ± 0.15E2 | 4.01E-3 ± 2.78E-4 | 0.95 ± 0.041 | 6.75E2 ± 1.58E1 |
14 | 27.51 ± 0.08 | 3.09E-2 ± 1.40E-4 | 0.52 ± 1.4E-3 | 5.12E3 ± 0.05E2 | 2.16E-3 ± 7.49E-5 | 0.92 ± 0.005 | 6.20E2 ± 1.67E1 |
28 | 28.16 ± 0.01 | 3.28E-2 ± 0.20E-4 | 0.48 ± 0.6E-3 | 4.64E3 ± 1.05E2 | 2.90E-3 ± 6.21E-5 | 0.84 ± 0.003 | 5.23E2 ± 0.95E1 |
Table 7 Simulated parameters achieved by fitting results of measured EIS data in STR + SRB medium (standard deviation shown for 3 independent samples).
Time (days) | Rs (Ω cm2) | Qb (Ω-1 cm-2 s-n) | nb | Rb (Ω cm2) | Qdl (Ω-1 cm-2 s-n) | ndl | Rct (Ω cm2) |
---|---|---|---|---|---|---|---|
1 | 32.83 ± 0.12 | 0.93E-2 ± 2.50E-4 | 0.64 ± 1.3E-3 | 7.51E3 ± 2.23E2 | 4.84E-4 ± 1.59E-5 | 0.97 ± 0.001 | 9.22E2 ± 1.02E1 |
3 | 29.30 ± 0.02 | 2.56E-2 ± 2.10E-4 | 0.57 ± 0.4E-3 | 5.59E3 ± 1.16E2 | 1.18E-3 ± 0.91E-5 | 0.96 ± 0.013 | 7.80E2 ± 0.41E1 |
7 | 35.99 ± 0.22 | 2.88E-2 ± 8.02E-4 | 0.54 ± 3.8E-3 | 5.33E3 ± 0.15E2 | 4.01E-3 ± 2.78E-4 | 0.95 ± 0.041 | 6.75E2 ± 1.58E1 |
14 | 27.51 ± 0.08 | 3.09E-2 ± 1.40E-4 | 0.52 ± 1.4E-3 | 5.12E3 ± 0.05E2 | 2.16E-3 ± 7.49E-5 | 0.92 ± 0.005 | 6.20E2 ± 1.67E1 |
28 | 28.16 ± 0.01 | 3.28E-2 ± 0.20E-4 | 0.48 ± 0.6E-3 | 4.64E3 ± 1.05E2 | 2.90E-3 ± 6.21E-5 | 0.84 ± 0.003 | 5.23E2 ± 0.95E1 |
Time (days) | Rs (Ω cm2) | Qb (Ω-1 cm-2 s-n) | nb | Rb (Ω cm2) | Qdl (Ω-1 cm-2 s-n) | ndl | Rct (Ω cm2) |
---|---|---|---|---|---|---|---|
1 | 30.38 ± 0.06 | 3.56E-3 ± 1.58E-5 | 0.67 ± 9.3E-3 | 3.50E4 ± 4.95E2 | 4.26E-4 ± 6.24E-5 | 0.93 ± 0.014 | 4.29E3 ± 8.27E1 |
3 | 31.30 ± 0.04 | 3.87E-3 ± 4.04E-4 | 0.62 ± 5.0E-2 | 3.11E4 ± 5.87E2 | 6.65E-4 ± 5.89E-5 | 0.85 ± 0.015 | 3.25E3 ± 5.37E1 |
7 | 31.74 ± 0.01 | 4.21E-3 ± 4.10E-7 | 0.73 ± 2.8E-3 | 3.29E4 ± 1.02E3 | 3.88E-4 ± 7.99E-6 | 0.76 ± 0.006 | 4.08E3 ± 6.71E1 |
14 | 31.84 ± 0.29 | 4.37E-3 ± 8.77E-5 | 0.61 ± 5.6E-2 | 2.32E4 ± 7.78E1 | 3.99E-4 ± 2.33E-6 | 0.86 ± 0.003 | 2.58E3 ± 3.71E1 |
28 | 33.14 ± 0.40 | 4.75E-3 ± 1.12E-4 | 0.57 ± 3.2E-2 | 1.01E4 ± 8.48E1 | 1.70E-3 ± 1.55E-5 | 0.81 ± 0.007 | 1.20E3 ± 5.52E1 |
Table 8 Simulated parameters achieved by fitting results of measured EIS data in STR + SRB + OSA medium (standard deviation shown for 3 independent samples).
Time (days) | Rs (Ω cm2) | Qb (Ω-1 cm-2 s-n) | nb | Rb (Ω cm2) | Qdl (Ω-1 cm-2 s-n) | ndl | Rct (Ω cm2) |
---|---|---|---|---|---|---|---|
1 | 30.38 ± 0.06 | 3.56E-3 ± 1.58E-5 | 0.67 ± 9.3E-3 | 3.50E4 ± 4.95E2 | 4.26E-4 ± 6.24E-5 | 0.93 ± 0.014 | 4.29E3 ± 8.27E1 |
3 | 31.30 ± 0.04 | 3.87E-3 ± 4.04E-4 | 0.62 ± 5.0E-2 | 3.11E4 ± 5.87E2 | 6.65E-4 ± 5.89E-5 | 0.85 ± 0.015 | 3.25E3 ± 5.37E1 |
7 | 31.74 ± 0.01 | 4.21E-3 ± 4.10E-7 | 0.73 ± 2.8E-3 | 3.29E4 ± 1.02E3 | 3.88E-4 ± 7.99E-6 | 0.76 ± 0.006 | 4.08E3 ± 6.71E1 |
14 | 31.84 ± 0.29 | 4.37E-3 ± 8.77E-5 | 0.61 ± 5.6E-2 | 2.32E4 ± 7.78E1 | 3.99E-4 ± 2.33E-6 | 0.86 ± 0.003 | 2.58E3 ± 3.71E1 |
28 | 33.14 ± 0.40 | 4.75E-3 ± 1.12E-4 | 0.57 ± 3.2E-2 | 1.01E4 ± 8.48E1 | 1.70E-3 ± 1.55E-5 | 0.81 ± 0.007 | 1.20E3 ± 5.52E1 |
Fig. 16. Proposed pit formation and OSA mitigation mechanisms on 20SiMn steel surface in (a) STR, (b) STR + OSA, (c) STR + SRB and (d) STR + SRB + OSA media after 28 days.
[1] | H. Castaneda, X.D. Benetton , Corros. Sci., 50(2008), pp. 1169-1183. |
[2] | Y. Chen, Q. Tang, J.M. Senko, G. Cheng, B. Zhang Newby, H. Castaneda, L.K. Ju , Corros. Sci., 90(2015), pp. 89-100. |
[3] | T. Wu, M. Yan, J. Xu, Y. Liu, C. Sun, W. Ke , Corros. Sci., 108(2016), pp. 160-168. |
[4] | T. Gu, R. Jia, T. Unsal, D. Xu, J. Mater. Sci. Technol., 35(2018), pp. 631-636. |
[5] | J.F.D. Stott, Shreir’s Corrosion, Elsevier, Oxford(2010), pp. 1169-1190. |
[6] | G.A. Jacobson , Mater. Perform., 46(2007), pp. 26-34. |
[7] | N. Snow , , May 19, 2007. |
[8] | R. Javaherdashti , Microbiologically Influenced Corrosion-An Engineering Insight, Springer International Publishing, New York(2008),pp. 1-3. |
[9] | H.T. Dinh, J. Kuever, M. Mußmann, A.W. Hassel, M. Stratmann, F. Widdel , Nature, 427(2004), pp. 829-832. |
[10] | D. Xu, Y. Li, F. Song, T. Gu , Corros. Sci., 77(2013), pp. 385-390. |
[11] | A. Kolmert, D.B. Johnson, J. Chem. Technol. Biotechnol., 76(2001), pp. 836-843. |
[12] |
W.A. Hamilton , Annu. Rev. Microbiol., 39(1985), pp. 195-217
URL PMID |
[13] | P.F. Beese-Vasbender, S. Nayak, A. Erbe, M. Stratmann, K.J.J. Mayrhofer, Electrochim. Acta, 167(2015), pp. 321-329. |
[14] |
D. Xu, Y. Li, T. Gu , Bioelectrochemistry, 110(2016), pp. 52-58.
URL PMID |
[15] | P. Angell, K. Urbanic , Corros. Sci., 42(2000), pp. 897-912. |
[16] | R.C. Newman, B.J. Webster, R.G. Kelly , Transport. Iron. Steel. Inst. Jpn., 31(1991), pp. 201-209. |
[17] | R. Torres-Sanchez, J. García-Vargas, A. Alfonso-Alonso, L. Martínez-Gómez , Mater. Corros., 52(2001), pp. 614-618. |
[18] | R. Galvan-Martinez, G. Garcia-Caloca, R. Duran-Romero, R. Torres-Sanchez, J. Mendoza-Flores, J. Genesca , Mater. Corros., 56(2015), pp. 678-684. |
[19] | I.N. Etim, J. Wei, J. Dong, D. Xu, N. Chen, X. Wei, M. Su, W. Ke, , Biofouling(2019), pp. 1-17. |
[20] | Y.T. Tan, S.L. Wijesinghe, D.J. Blackwood , Corros. Sci., 88(2014), pp. 152-160. |
[21] | S. Mindess, J.F. Young, D. Darwin, Concrete, (second ed.), Prentice Hall, New Jersey (2003). |
[22] | J.F. Marquez, M. Sanchez-silva, J. Husserl , Proceeding of VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures-FraMCoS-8, Toledo, Spain(2013). |
[23] | N. Abd Rahman, A.F. Alshalif, J.M. Irwan, N. Othman, L.H. Anneza, Z. Mohd Jaini, R. Yunus, S.N. Rahmat, MATEC Web of Conferences, 47 (2016),p. 01016 |
[24] |
V.G. Paul, D.J. Wronkiewicz, M.R. Mormile, Appl. Geochem., 78(2017), pp. 250-271.
DOI URL |
[25] | P.S. Guiamet, S.G. Gomez De Saravia, Latin. Am. Appl. Res., 35(2005), pp. 295-300. |
[26] | B.J. Little, J.S. Lee, Microbiologically Influenced Corrosion, Wiley Sons Inc, Hoboken, New Jersey(2007). |
[27] | H.W. Rossmoore , Food. Eng., 38(1995), pp. 349-415. |
[28] | C.C. Gaylarde, H.A. Videla, Ist Pan-american Congress on Corrosion and Protection(AAC-NACE), Mar del Plata, Argentina, (1992), pp. 371-378. |
[29] | T. Aikawa, T. Ikemoto, Quaternary Ammonium Salt, John Wiley & Sons Inc., New York (2016), pp.895-898. |
[30] | X. Wang, C. Wang , J. Sol-gel, Sci.Technol., 50(2009), pp. 15-21. |
[31] | M. Marini, M. Bondi, R. Iseppi, M. Toselli, F. Pilati , Eur. Polym. J., 43(2007), pp. 3621-3628. |
[32] | G. Trabanelli, C. Monticelli, V. Grassi, A. Frignani , Cement Concrete Res., 35(2005), pp. 1804-1813. |
[33] | M. Liu, X. Cheng, X. Li, C. Zhou, H. Tan , Constr. Build. Mater., 130(2017), pp. 193-201. |
[34] | M.F. Montemor, M.P. Cunha, M.G. Ferreira, A.M. Simões , Cement Concrete Comp., 24(2002), pp. 45-53. |
[35] | M. Stefanoni, U. Angst, B. Elsener , Cement Concrete Res., 103(2018), pp. 35-48. |
[36] | P. McIntyre, A.D. Mercer, L.L. Shreir, R.A. Jarman, G.T. Burstein (Eds.), Corrosion(third edition), Butterworth-Heinemann, Oxford(1994), pp. 19:122-119:132. |
[37] | ASTM Handbook 3.02 Corrosion of Metals, Wear and Erosion, (2011), pp. 20-28. West Conshohocken, Pennsylvania, |
[38] | G.D. Song, S.-H. Jeon, Y.H. Son, J.G. Kim, D.H. Hur, Corros. Sci., 131(2018), pp. 71-80. |
[39] | J. Xu, K. Wang, C. Sun, F. Wang, X. Li, J. Yang, C. Yu , Corros. Sci., 53(2011), pp. 1554-1562. |
[40] | X. Shi, N. Xie, K. Fortune, J. Gong , Constr. Build. Mater., 30(2012), pp. 125-138. |
[41] | K.Y. Ann, H.-W. Song, Corros.Sci., 49(2007), pp. 4113-4133. |
[42] | D.H. Davies, G.T. Burstein , Corros. Sci., 20(1980), pp. 973-987. |
[43] | P. Wang, Z. Lu, D. Zhang , Corros. Sci., 93(2015), pp. 159-166. |
[44] | H. Liu, T. Gu, G. Zhang, Y. Cheng, H. Wang, H. Liu , Corros. Sci., 102(2016), pp. 93-102. |
[45] | F. Cao, J. Wei, J. Dong, W. Ke , Corros. Sci., 100(2015), pp. 365-376. |
[46] | P. Ghods, O. Burkan Isgor, F. Bensebaa, D. Kingston , Corros. Sci., 58(2012), pp. 159-167. |
[47] | X. Feng, R. Shi, X. Lu, Y. Xu, X. Huang, D. Chen , Corros. Sci., 124(2017), pp. 150-159. |
[48] | R.V. Siriwardane, J.M. Cook , J. Colloid Interface Sci., 108(1985), pp. 414-422. |
[49] | U. Eduok, O. Faye, J. Szpunar , Eng. Fail. Anal., 93(2018), pp. 111-121. |
[50] | H. Liu, T. Gu, Y. Lv, M. Asif, F. Xiong, G. Zhang, H. Liu , Corros. Sci., 117(2017), pp. 24-34. |
[51] | H. Liu, T. Gu, M. Asif, G. Zhang, H. Liu , Corros. Sci., 114(2017), pp. 102-111. |
[52] | S. Chen, P. Wang, D. Zhang , Corros. Sci., 87(2014), pp. 407-415. |
[53] | D. Xu, T. Gu , Int. Biodeter. Biodegr., 91(2014), pp. 74-81. |
[54] | Y. Zou, J. Wang, Y.Y. Zheng , Corros. Sci., 53(2011), pp. 208-216. |
[55] | J.A. González, J.M. Miranda, E. Otero, S. Feliu , Corros. Sci., 49(2007), pp. 436-448. |
[56] |
F. Xue, X. Wei, J. Dong, I.N. Etim, C. Wang, W. Ke, J. Mater. Sci. Technol., 34(2018), pp. 1349-1358.
DOI URL |
[57] | U.R. Evans , Corros. Sci., 9(1969), pp. 813-821. |
[58] | U.R. Evans, C.A.J. Taylor, Corros. Sci., 12(1972), pp. 227-246. |
[59] | T. Misawa, K. Asami, K. Hashimoto, S. Shimodaira , Corros. Sci., 14(1974), pp. 279-289. |
[60] | S.J. Yuan, B. Liang, Y. Zhao, S.O. Pehkonen , Corros. Sci., 74(2013), pp. 353-366. |
[61] | X. Hao, J. Dong, I.N. Etim, J. Wei, W. Ke , Corros. Sci., 110(2016), pp. 296-304. |
[62] | X. Mu, J. Wei, J. Dong, W. Ke, J. Mater. Sci. Technol., 30(2014), pp. 1043-1050. |
[63] | X. Hao, J. Dong, J. Wei, I.N. Etim, W. Ke , Corros. Sci., 121(2017), pp. 84-93. |
[64] | L. Abdoli, J. Huang, H. Li , Mater. Chem. Phys., 173(2016), pp. 62-69. |
[65] | L. Abdoli, X. Suo, H. Li , Colloids Surf. B Biointerfaces, 145(2016), pp. 688-694. |
[66] | T. Gu, K. Zhao, S. Nesic , Corrosion/2009, NACE, Houston, TX(2009). |
[67] | Y. Zhao, E. Zhou, Y. Liu, S. Liao, Z. Li, D. Xu, T. Zhang, T. Gu , Corros. Sci., 126(2017), pp. 142-151. |
[1] | Fandi Meng, Li Liu, Yu Cui, Fuhui Wang. Evaluation of coating resistivity for pigmented/unpigmented epoxy coatings under marine alternating hydrostatic pressure [J]. J. Mater. Sci. Technol., 2021, 64(0): 165-175. |
[2] | Yi Zou, Yanxia Zhang, Qian Yu, Hong Chen. Dual-function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously [J]. J. Mater. Sci. Technol., 2021, 70(0): 24-38. |
[3] | Yanhua Zeng, Fenfen Yang, Zongning Chen, Enyu Guo, Minqiang Gao, Xuejian Wang, Huijun Kang, Tongmin Wang. Enhancing mechanical properties and corrosion resistance of nickel-aluminum bronze via hot rolling process [J]. J. Mater. Sci. Technol., 2021, 61(0): 186-196. |
[4] | Yue Wang, Xin Mu, Junhua Dong, Aniefiok Joseph Umoh, Wei Ke. Insight into atmospheric corrosion evolution of mild steel in a simulated coastal atmosphere [J]. J. Mater. Sci. Technol., 2021, 76(0): 41-50. |
[5] | Dequan Wu, Lingwei Ma, Bei Liu, Dawei Zhang, Badar Minhas, Hongchang Qian, Herman A. Terryn, Johannes M.C.Mol. Long-term deterioration of lubricant-infused nanoporous anodic aluminium oxide surface immersed in NaCl solution [J]. J. Mater. Sci. Technol., 2021, 64(0): 57-65. |
[6] | Changhong Cai, Marta M. Alves, Renbo Song, Yongjin Wang, Jingyuan Li, M. Fátima Montemor. Non-destructive corrosion study on a magnesium alloy with mechanical properties tailored for biodegradable cardiovascular stent applications [J]. J. Mater. Sci. Technol., 2021, 66(0): 128-138. |
[7] | Durga Bhakta Pokharel, Liping Wu, Junhua Dong, Xin Wei, Ini-Ibehe Nabuk Etim, Dhruba Babu Subedi, Aniefiok Joseph Umoh, Wei Ke. Effect of D-fructose on the in-vitro corrosion behavior of AZ31 magnesium alloy in simulated body fluid [J]. J. Mater. Sci. Technol., 2021, 66(0): 202-212. |
[8] | Di Wang, Mahmoud Ramadan, Sith Kumseranee, Suchada Punpruk, Tingyue Gu. Mitigating microbiologically influenced corrosion of an oilfield biofilm consortium on carbon steel in enriched hydrotest fluid using 2,2-dibromo-3-nitrilopropionamide (DBNPA) enhanced by a 14-mer peptide [J]. J. Mater. Sci. Technol., 2020, 57(0): 146-152. |
[9] | Jiaxin Zhang, Jinshan Zhang, Fuyin Han, Wei Liu, Longlong Zhang, Rui Zhao, Chunxiang Xu, Jing Dou. Modification of Mn on corrosion and mechanical behavior of biodegradable Mg88Y4Zn2Li5 alloy with long-period stacking ordered structure [J]. J. Mater. Sci. Technol., 2020, 42(0): 130-142. |
[10] | Mingna Wang, Chuang Qiao, Xiaolin Jiang, Long Hao, Xiahe Liu. Microstructure induced galvanic corrosion evolution of SAC305 solder alloys in simulated marine atmosphere [J]. J. Mater. Sci. Technol., 2020, 51(0): 40-53. |
[11] | Guangyu Liu, Shohreh Khorsand, Shouxun Ji. Electrochemical corrosion behaviour of Sn-Zn-xBi alloys used for miniature detonating cords [J]. J. Mater. Sci. Technol., 2019, 35(8): 1618-1628. |
[12] | Xuehui Hao, Junhua Dong, Xin Mu, Jie Wei, Changgang Wang, Wei Ke. Influence of Sn and Mo on corrosion behavior of ferrite-pearlite steel in the simulated bottom plate environment of cargo oil tank [J]. J. Mater. Sci. Technol., 2019, 35(5): 799-811. |
[13] | Min Cao, Li Liu, Zhongfen Yu, Lei Fan, Ying Li, Fuhui Wang. Electrochemical corrosion behavior of 2A02 Al alloy under an accelerated simulation marine atmospheric environment [J]. J. Mater. Sci. Technol., 2019, 35(4): 651-659. |
[14] | Chuang Qiao, Lianfeng Shen, Long Hao, Xin Mu, Junhua Dong, Wei Ke, Jing Liu, Bo Liu. Corrosion kinetics and patina evolution of galvanized steel in a simulated coastal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35(10): 2345-2356. |
[15] | Wenhua Xu, En-Hou Han, Zhenyu Wang. Effect of tannic acid on corrosion behavior of carbon steel in NaCl solution [J]. J. Mater. Sci. Technol., 2019, 35(1): 64-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||