J. Mater. Sci. Technol. ›› 2021, Vol. 64: 57-65.DOI: 10.1016/j.jmst.2019.12.008
• Research article • Previous Articles Next Articles
Dequan Wua, Lingwei Maa, Bei Liua, Dawei Zhanga,*(), Badar Minhasa, Hongchang Qiana, Herman A. Terrynb,c, Johannes M.C.Molc
Received:
2019-10-28
Accepted:
2019-12-03
Published:
2021-02-20
Online:
2021-03-15
Contact:
Dawei Zhang
About author:
*. E-mail address: dzhang@ustb.edu.cn(D. Zhang).Dequan Wu, Lingwei Ma, Bei Liu, Dawei Zhang, Badar Minhas, Hongchang Qian, Herman A. Terryn, Johannes M.C.Mol. Long-term deterioration of lubricant-infused nanoporous anodic aluminium oxide surface immersed in NaCl solution[J]. J. Mater. Sci. Technol., 2021, 64: 57-65.
Fig. 2. Cryo-SEM image of LIS during immersion in 1 M NaCl solution for 90 (a), 150 (b) and 210 (c) days. (a1) Top view, (a2) upper cross section. (b1) Top view, (b2) entire cross section, (b3) upper cross section, and (b4) bottom cross section. (c1) Upper cross section, (c2) bottom cross section.
Fig. 3. (a) WCA on surface covered by oil layer (a1), solid and oil composite surface (a2), and solid and air composite surface (a3). WCA (b) and SA (c) of LIS during different deterioration stages.
Fig. 4. Change in lubricant mass of LIS during long-term immersion. (a) UV absorption spectra of standard lubricant solutions with different lubricant concentrations (0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, and 4.0 μL/mL) in dichloromethane, (b) linear correlation between UV absorption intensity and lubricant concentration, (c) UV absorption spectra of extracted lubricant in dichloromethane, (d) change in lubricant mass in LIS during deterioration process.
Fig. 5. (a) Impedance modulus plots and (b) phase angle plots for LIS with controlled top layer lubricant thicknesses (0, 1, 3, 5 and 7 μm), bare AAO immersed in 1 M NaCl solution for 0 day (the NaCl solution was just infused into the nanochannel), and bare AAO immersed in 1 M NaCl solution for 20 days. (c) Impedance modulus plots and (d) phase angle plots of LIS during immersion in 1 M NaCl solution for up to 210 days.
Fig. 6. Deterioration process of cracked LIS. (a, b) Cracks and nanochannels in LIS still filled with lubricant after immersion in 1 M NaCl solution for 60 days. (c, d) lubricant dissolved from nanochannels partially but from cracks predominantly after immersion in NaCl solution for 150 days.
Fig. 7. (a) Impedance modulus plots and (b) phase angle plots of standard specimens (intact and cracked) to simulate deterioration process of defective LIS.
Fig. 8. Equivalent circuits for modelling impedance behaviour of LIS in different deterioration stages. (a) Nanochannels infused with lubricant, (b) simplified circuit of (a), (c) nanochannels fully penetrated by NaCl solution, and (d) attack occurring on barrier layer.
Time (d) | Qp (×10-10 S sn cm-2) | n | Cp (×10-10 S sn cm-2) | Rp (×103 Ω cm2) | Qb (×10-10 S sn cm-2) | n | Cb (×10-10 S sn cm-2) | Rb (×109 Ω cm2) | χ2 |
---|---|---|---|---|---|---|---|---|---|
0 | 7.38 | 0.89 | 3.08 | 1175 | 242 | 0.90 | 377 | 2.24 | 4.5 × 10-3 |
20 | 17.7 | 0.98 | 15.3 | 474.3 | 308 | 0.84 | 675 | 1.99 | 2.1 × 10-3 |
40 | 139 | 0.82 | 34.7 | 128.6 | 369 | 0.92 | 549 | 2.63 | 6.2 × 10-4 |
60 | 904 | 0.89 | 431 | 27.47 | 409 | 0.95 | 503 | 1.26 | 3.3 × 10-4 |
90 | 752 | 0.98 | 658 | 18.7 | 443 | 0.92 | 659 | 2.16 | 3.2 × 10-3 |
120 | 2674 | 0.95 | 2018 | 17.9 | 447 | 0.94 | 610 | 2.91 | 7.8 × 10-3 |
Table 1 Electrochemical parameters ?tted from EIS results of LIS immersed in 1 M NaCl solution from 0 to 120 days.
Time (d) | Qp (×10-10 S sn cm-2) | n | Cp (×10-10 S sn cm-2) | Rp (×103 Ω cm2) | Qb (×10-10 S sn cm-2) | n | Cb (×10-10 S sn cm-2) | Rb (×109 Ω cm2) | χ2 |
---|---|---|---|---|---|---|---|---|---|
0 | 7.38 | 0.89 | 3.08 | 1175 | 242 | 0.90 | 377 | 2.24 | 4.5 × 10-3 |
20 | 17.7 | 0.98 | 15.3 | 474.3 | 308 | 0.84 | 675 | 1.99 | 2.1 × 10-3 |
40 | 139 | 0.82 | 34.7 | 128.6 | 369 | 0.92 | 549 | 2.63 | 6.2 × 10-4 |
60 | 904 | 0.89 | 431 | 27.47 | 409 | 0.95 | 503 | 1.26 | 3.3 × 10-4 |
90 | 752 | 0.98 | 658 | 18.7 | 443 | 0.92 | 659 | 2.16 | 3.2 × 10-3 |
120 | 2674 | 0.95 | 2018 | 17.9 | 447 | 0.94 | 610 | 2.91 | 7.8 × 10-3 |
Time (d) | θQp (×10-10 S sn cm-2) | n | θCp (×10-10 S sn cm-2) | Rp/θ (×103 Ω cm2) | θQb (×10-10 S sn cm-2) | n | θCb (×10-10 S sn cm-2) | Rb/θ (×109 Ω cm2) |
---|---|---|---|---|---|---|---|---|
150 | 2566 | 0.80 | 778 | 33.0 | 685 | 0.95 | 814 | 0.39 |
80 | 18410 | 0.67 | 4640 | 33.1 | 738 | 0.87 | 1297 | 0.59 |
210 | 12460 | 0.85 | 6187 | 15.2 | 1650 | 0.64 | 14251 | 0.28 |
Table 2 Electrochemical parameters ?tted from EIS results of LIS immersed in 1 M NaCl solution from 150 to 210 days.
Time (d) | θQp (×10-10 S sn cm-2) | n | θCp (×10-10 S sn cm-2) | Rp/θ (×103 Ω cm2) | θQb (×10-10 S sn cm-2) | n | θCb (×10-10 S sn cm-2) | Rb/θ (×109 Ω cm2) |
---|---|---|---|---|---|---|---|---|
150 | 2566 | 0.80 | 778 | 33.0 | 685 | 0.95 | 814 | 0.39 |
80 | 18410 | 0.67 | 4640 | 33.1 | 738 | 0.87 | 1297 | 0.59 |
210 | 12460 | 0.85 | 6187 | 15.2 | 1650 | 0.64 | 14251 | 0.28 |
Fig. 9. Fitting results of parameters (R (or θR) and C (or θC)) of (a) lubricant in porous layer and (b) barrier layer during immersion in 1 M NaCl solution for 210 days.
[1] |
L.Y. Cui, H.P. Liu, W.L. Zhang, Z.Z. Han, M.X. Deng, R.C. Zeng, S.Q. Li, Z.L. Wang, J. Mater. Sci. Technol., 33(2017), pp. 1263-1271.
DOI URL |
[2] |
L. Guo, W. u, Y.F. Zhou, F. Zhang, R.C. Zeng, J.M. Zeng, J. Mater. Sci. Technol., 34(2018), pp. 1455-1466.
DOI URL |
[3] |
Y. Huang, L. Deng, P. Ju, L. Huang, H. Qian, D. Zhang, X. Li, H.A. Terryn, J.M.C. Mol, ACS Appl. Mater. Interface, 10(2018), pp. 23369-23379.
DOI URL |
[4] |
C.S. Chi, J.H. Lee, I. Kim, H.J. Oh, J. Mater. Sci. Technol., 31(2015), pp. 751-758.
DOI URL |
[5] |
J. Lee, S. Shin, Y. Jiang, C. Jeong, H.A. Stone, C. Choi, Adv. Funct. Mater., 27 (2017), Article 16066040.
DOI URL PMID |
[6] |
J. Lee, U. Jung, W. Kim, W. Chung , Appl. Surf. Sci., 283(2013), pp. 941-946.
DOI URL |
[7] |
J. Lee, D. Kim, C. Choi, W. Chung , Nano Energy, 31(2017), pp. 504-513.
DOI URL |
[8] |
T.P. Hoar, G.C. Wood , Electrochim. Acta, 7(1962), pp. 333-353.
DOI URL |
[9] |
H. Wang, H. Yi, H. Wang , Appl. Surf. Sci., 252(2005), pp. 1662-1667.
DOI URL |
[10] |
W. Zhang, D. Zhang, Y. Le, L. Li, B. Ou , Appl. Surf. Sci., 255(2008), pp. 2671-2674.
DOI URL |
[11] |
T.S. Wong, S.H. Kang, S.K. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal, J. Aizenberg , Nature, 477(2011), p. 443.
DOI URL PMID |
[12] |
M. Nosonovsky , Nature, 477(2011), pp. 412-413.
DOI URL PMID |
[13] |
C. Zhang, B. Zhang, H. Ma, Z. Li, X. Xiao, Y. Zhang, X. Cui, C. Yu, M. Cao, L. Jiang , ACS Nano, 12(2018), pp. 2048-2055.
DOI URL PMID |
[14] | X. Dai, N. Sun, S.O. Nielsen, B.B. Stogin, J. Wang, S. Yang, T.S. Wong , Sci. Adv., 4(2018), p. q919. |
[15] |
F. Zhang, P. Ju, M. Pan, D. Zhang, Y. Huang, G. Li, X. Li , Corros. Sci., 144(2019), pp. 74-88.
DOI URL |
[16] |
H. Zhao, Q. Sun, X. Deng, J. Cui, Adv. Mater., 30 (2018), Article 1802141.
DOI URL PMID |
[17] |
P. Wang, T. Li, D. Zhang , Corros. Sci., 128(2017), pp. 110-119.
DOI URL |
[18] |
M. Tenjimbayashi, S. Nishioka, Y. Kobayashi, K. Kawase, J. Li, J. Abe, S. Shiratori , Langmuir, 34(2018), pp. 1386-1393.
DOI URL PMID |
[19] |
H. Luo, S. Yin, S. Huang, F. Chen, Q. Tang, X. Li , Appl. Surf. Sci., 470(2019), pp. 1139-1147.
DOI URL |
[20] |
P. Wang, D. Zhang, S. Sun, T. Li, Y. Sun , ACS Appl. Mater. Interface, 9(2016), pp. 972-982.
DOI URL |
[21] |
P. Wang, Z. Lu, D. Zhang , Corros. Sci., 93(2015), pp. 159-166.
DOI URL |
[22] |
C.S. Ware, T. Smith-Palmer, S. Peppou-Chapman, L.R.J. Scarratt, E.M. Humphries, D. Balzer, C. Neto, ACS Appl. Mater. Interface, 10(2018), pp. 4173-4182.
DOI URL |
[23] |
L. Xiao, J. Li, S. Mieszkin, F.A. Di, A.S. Clare , ACS Appl. Mater. Interface, 5(2013), pp. 10074-10080.
DOI URL |
[24] |
J. Zhang, C. Gu, J. Tu , ACS Appl. Mater. Interface, 9(2017), pp. 11247-11257.
DOI URL |
[25] |
Y. Tuo, H. Zhang, W. Chen, X. Liu , Appl. Surf. Sci., 423(2017), pp. 365-374.
DOI URL |
[26] |
T. Xiang, M. Zhang, H.R. Sadig, Z. Li, M. Zhang, C. Dong, L. Yang, W. Chan, C. Li , Chem. Eng. J., 345(2018), pp. 147-155.
DOI URL |
[27] |
D. Jiang, X. Xia, J. Hou, G. Cai, X. Zhang, Z. Dong , Chem. Eng. J., 373(2019), pp. 285-297.
DOI URL |
[28] |
T. Xiang, S. Zheng, M. Zhang, H.R. Sadig, C. Li , ACS Sustain. Chem. Eng., 6(2018), pp. 10960-10968.
DOI URL |
[29] |
P. Wang, Z. Lu, D. Zhang , Corros. Sci., 93(2015), pp. 159-166.
DOI URL |
[30] |
C.S. Ware, T. Smith-Palmer, S. Peppou-Chapman, L.R.J. Scarratt, E.M. Humphries, D. Balzer, C. Neto, ACS Appl. Mater. Interface, 10(2018), pp. 4173-4182.
DOI URL |
[31] |
A.K. Epstein, T.S. Wong, R.A. Belisle, E.M. Boggs, J. Aizenberg , Proc. Natl. Acad. Sci. U. S. A., 109(2012), p. 13182.
DOI URL PMID |
[32] | M. Fu, M. Hultmark, Lubricant Retention for Liquid Infused Surfaces Exposed to Turbulent Flow, APS Meeting, Boston, Massachusetts(2015). |
[33] |
S. Rowthu, P. Hoffmann , ACS Appl. Mater. Interface, 10(2018), pp. 10560-10570.
DOI URL |
[34] |
H. Qian, D. Xu, C. Du, D. Zhang, X. Li, L. Huang, L. Deng, Y. Tu, A.J.M.C. Mol, H. Terryn, J. Mater. Chem. A, 5(2017), pp. 2355-2364.
DOI URL |
[35] |
D.J. Donahue, F.E. Bartell, J. Phys. Chem, 56(1952), pp. 480-489.
DOI URL |
[36] |
S. Sett, X. Yan, G. Barac, L.W. Bolton, N. Miljkovic , ACS Appl. Mater. Interface, 9(2017), pp. 36400-36408.
DOI URL |
[37] |
R. Jeltes, W.A.M.D. Tonkelaar , Water Res., 6(1972), pp. 271-278.
DOI URL |
[38] |
C. Howell, T.L. Vu, C.P. Johnson, X. Hou, O. Ahanotu, J. Alvarenga, D.C. Leslie, O. Uzun, A. Waterhouse, P. Kim, Chem. Mater., 27 (2016), Article 557762294.
DOI URL PMID |
[39] |
A. Vorobev , Curr. Opin. Colloid Interface, 19(2014), pp. 300-308.
DOI URL |
[40] |
Y. Cheng, H. Suhonen, L. Helfen, J. Li, F. Xu, M. Grunze, P.A. Levkin, T. Baumbach , Soft Matter, 10(2014), pp. 2982-2990.
DOI URL PMID |
[41] |
K. Rykaczewski, T. Landin, M.L. Walker, J.H.J. Scott, K.K. Varanasi, ACS Nano, 6(2012), pp. 9326-9334.
DOI URL PMID |
[42] |
S. Anand, A.T. Paxson, R. Dhiman, J.D. Smith, K.K. Varanasi , ACS Nano, 6(2012), pp. 10122-10129.
DOI URL PMID |
[43] |
D.J. Preston, Y. Song, Z. Lu, D.S. Antao, E.N. Wang , ACS Appl. Mater. Interface, 9(2017), pp. 42383-42392.
DOI URL |
[44] |
J.D. Smith, R. Dhiman, S. Anand, E. Rezagarduno, R.E. Cohen, G.H. Mckinley, K.K. Varanasi , Soft Matter, 9(2013), pp. 1772-1780.
DOI URL |
[45] |
D. Wu, D. Zhang, Y. Ye, L. Ma, B. Minhas, B. Liu, H.A. Terryn, J.M.C. Mol, X. Li, Chem. Eng. J., 368(2019), pp. 138-147.
DOI URL |
[46] |
S.K. Rawal, A.K. Chawla, R. Jayaganthan, R. Chandra, J. Mater. Sci. Technol., 28(2012), pp. 512-523.
DOI URL |
[47] |
D.R. Thompson, E. Kougoulos, A.G. Jones, M.W. Wood-Kaczmar, J. Cryst. Growth, 276(2005), pp. 230-236.
DOI URL |
[48] |
D. Zhang, H. Qian, L. Wang, X. Li , Corros. Sci., 103(2016), pp. 230-241.
DOI URL |
[49] |
S. Wang, H. Peng, Z. Shao, Q. Zhao, N. Du , Surf. Coat. Technol., 286(2016), pp. 155-164.
DOI URL |
[50] |
M.M. Ali, V. Raj, J. Mater. Sci. Technol., 29(2013), pp. 595-602.
DOI URL |
[51] |
Y. Zuo, R. Pang, W. Li, J.P. Xiong, Y.M. Tang , Corros. Sci., 50(2008), pp. 3322-3328.
DOI URL |
[52] |
N. Hu, X. Dong, X. He, J.F. Browning, D.W. Schaefer , Corros. Sci., 97(2015), pp. 17-24.
DOI URL |
[53] |
V. Moutarlier, M.P. Gigandet, B. Normand, J. Pagetti , Corros. Sci., 47(2005), pp. 937-951.
DOI URL |
[54] |
M. García-Rubio, P. Ocón, M. Curioni, G.E. Thompson, P. Skeldon, A. Lavía, I. García , Corros. Sci., 52(2010), pp. 2219-2227.
DOI URL |
[55] |
J. Hitzig, K. Jüttner, W.J. Lorenz, W. Paatsch , Corros. Sci., 24(1984), pp. 945-952.
DOI URL |
[56] | M.E. Orazem, B. Tribollet, V. Vivier, D.P. Riemer, E. White, A. Bunge, J. Braz. Chem. Soc., 25(2014), pp. 532-539. |
[57] |
B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani , Electrochim. Acta, 55(2010), pp. 6218-6227.
DOI URL |
[58] |
J.J. Suay, E. Gimenez, T. Rodrıguez, K. Habbib, J.J. Saura , Corros. Sci., 45(2003), pp. 611-624.
DOI URL |
[59] |
V.R. Capelossi, M. Poelman, I. Recloux, R.P.B. Hernandez, H.G. de Melo, M.G. Olivier, Electrochim. Acta, 124(2014), pp. 69-79.
DOI URL |
[60] |
N.D. Nam, J.G. Kim, Y.J. Lee, Y.K. Son , Corros. Sci., 51(2009), pp. 3007-3013.
DOI URL |
[61] |
L.B. Boinovich, A.M. Emelyanenko, A.D. Modestov, A.G. Domantovsky, A.A. Shiryaev, K.A. Emelyanenko, O.V. Dvoretskaya, A.A. Ganne , Corros. Sci., 112(2016), pp. 517-527.
DOI URL |
[62] |
U. Trdan, T. Sano, D. Klobčar, Y. Sano, J. Grum, R. Šturm , Corros. Sci., 143(2018), pp. 46-55.
DOI URL |
[1] | Changhong Cai, Marta M. Alves, Renbo Song, Yongjin Wang, Jingyuan Li, M. Fátima Montemor. Non-destructive corrosion study on a magnesium alloy with mechanical properties tailored for biodegradable cardiovascular stent applications [J]. J. Mater. Sci. Technol., 2021, 66(0): 128-138. |
[2] | Durga Bhakta Pokharel, Liping Wu, Junhua Dong, Xin Wei, Ini-Ibehe Nabuk Etim, Dhruba Babu Subedi, Aniefiok Joseph Umoh, Wei Ke. Effect of D-fructose on the in-vitro corrosion behavior of AZ31 magnesium alloy in simulated body fluid [J]. J. Mater. Sci. Technol., 2021, 66(0): 202-212. |
[3] | Fandi Meng, Li Liu, Yu Cui, Fuhui Wang. Evaluation of coating resistivity for pigmented/unpigmented epoxy coatings under marine alternating hydrostatic pressure [J]. J. Mater. Sci. Technol., 2021, 64(0): 165-175. |
[4] | Ini-Ibehe Nabuk Etim, Junhua Dong, Jie Wei, Chen Nan, Durga Bhakta Pokharel, Aniefiok Joseph Umoh, Dake Xu, Mingzhong Su, Wei Ke. Effect of organic silicon quaternary ammonium salts on mitigating corrosion of reinforced steel induced by SRB in mild alkaline simulated concrete pore solution [J]. J. Mater. Sci. Technol., 2021, 64(0): 126-140. |
[5] | Yanhua Zeng, Fenfen Yang, Zongning Chen, Enyu Guo, Minqiang Gao, Xuejian Wang, Huijun Kang, Tongmin Wang. Enhancing mechanical properties and corrosion resistance of nickel-aluminum bronze via hot rolling process [J]. J. Mater. Sci. Technol., 2021, 61(0): 186-196. |
[6] | Yue Wang, Xin Mu, Junhua Dong, Aniefiok Joseph Umoh, Wei Ke. Insight into atmospheric corrosion evolution of mild steel in a simulated coastal atmosphere [J]. J. Mater. Sci. Technol., 2021, 76(0): 41-50. |
[7] | Jiaxin Zhang, Jinshan Zhang, Fuyin Han, Wei Liu, Longlong Zhang, Rui Zhao, Chunxiang Xu, Jing Dou. Modification of Mn on corrosion and mechanical behavior of biodegradable Mg88Y4Zn2Li5 alloy with long-period stacking ordered structure [J]. J. Mater. Sci. Technol., 2020, 42(0): 130-142. |
[8] | Mingna Wang, Chuang Qiao, Xiaolin Jiang, Long Hao, Xiahe Liu. Microstructure induced galvanic corrosion evolution of SAC305 solder alloys in simulated marine atmosphere [J]. J. Mater. Sci. Technol., 2020, 51(0): 40-53. |
[9] | Guangyu Liu, Shohreh Khorsand, Shouxun Ji. Electrochemical corrosion behaviour of Sn-Zn-xBi alloys used for miniature detonating cords [J]. J. Mater. Sci. Technol., 2019, 35(8): 1618-1628. |
[10] | Xuehui Hao, Junhua Dong, Xin Mu, Jie Wei, Changgang Wang, Wei Ke. Influence of Sn and Mo on corrosion behavior of ferrite-pearlite steel in the simulated bottom plate environment of cargo oil tank [J]. J. Mater. Sci. Technol., 2019, 35(5): 799-811. |
[11] | Min Cao, Li Liu, Zhongfen Yu, Lei Fan, Ying Li, Fuhui Wang. Electrochemical corrosion behavior of 2A02 Al alloy under an accelerated simulation marine atmospheric environment [J]. J. Mater. Sci. Technol., 2019, 35(4): 651-659. |
[12] | Chuang Qiao, Lianfeng Shen, Long Hao, Xin Mu, Junhua Dong, Wei Ke, Jing Liu, Bo Liu. Corrosion kinetics and patina evolution of galvanized steel in a simulated coastal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35(10): 2345-2356. |
[13] | Wenhua Xu, En-Hou Han, Zhenyu Wang. Effect of tannic acid on corrosion behavior of carbon steel in NaCl solution [J]. J. Mater. Sci. Technol., 2019, 35(1): 64-75. |
[14] | Jiazhen Wang, Jianqiu Wang, Hongliang Ming, Zhiming Zhang, En-Hou Han. Effect of temperature on corrosion behavior of alloy 690 in high temperature hydrogenated water [J]. J. Mater. Sci. Technol., 2018, 34(8): 1419-1427. |
[15] | Pan Chen, Lv Wangyan, Wang Zhenyao, Su Wei, Wang Chuan, Liu Shinian. Atmospheric Corrosion of Copper Exposed in a Simulated Coastal-Industrial Atmosphere [J]. J. Mater. Sci. Technol., 2017, 33(6): 587-595. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||