J. Mater. Sci. Technol. ›› 2021, Vol. 75: 252-264.DOI: 10.1016/j.jmst.2020.11.012
• Research Article • Previous Articles Next Articles
Chuang Qiaoa,b, Mingna Wangc, Long Haob,d,*(), Xiahe Liua, Xiaolin Jianga, Xizhong Ana, Duanyang Lie
Received:
2020-06-24
Revised:
2020-09-27
Accepted:
2020-09-28
Published:
2020-11-06
Online:
2020-11-06
Contact:
Long Hao
Chuang Qiao, Mingna Wang, Long Hao, Xiahe Liu, Xiaolin Jiang, Xizhong An, Duanyang Li. Temperature and NaCl deposition dependent corrosion of SAC305 solder alloy in simulated marine atmosphere[J]. J. Mater. Sci. Technol., 2021, 75: 252-264.
Fig. 2. Schematic diagrams illustrating the two-electrode system used for in-situ EIS measurement: (a) arrangement and (b) dimension details of the electrodes; (c) 3D view of the embedded comb-like electrodes.
Fig. 3. Evolutions in in-situ EIS data measured on SAC305 comb-like electrode covered by electrolyte layer (ca. 400 μm) exposed to atmosphere with 80 % RH at 25 °C as a function of exposure time. (a), (b) and (c): 0.5 wt.% NaCl electrolyte layer; (d), (e) and (f): 2.0 wt.% NaCl electrolyte layer.
Fig. 4. Equivalent electrical circuit for in-situ EIS data on comb-like SAC305 electrodes covered with NaCl electrolyte layers as a function of exposure time in atmosphere with 80 % RH at 25 °C. (Rs and CPEs: electrolyte resistance on the whole covering area and overall intrinsic capacitance of the two electrodes; Ros and CPEos: resistance and capacitance of the corrosion product layer; Rct and CPEdl: charge transfer resistance and double layer capacitance on the two electrodes; W: Warburg diffusion impedance at the interface of corrosion product layer and solder substrate).
Fig. 5. Evolutions in Rs and Rct fitted from in-situ EIS data on comb-like SAC305 electrodes covered with NaCl solution layers as a function of exposure time in atmosphere with 80 % RH at 25 °C.
NaCl solution | Exposure time (h) | Rs (Ω cm2) | Ros (Ω cm2) | Qos × 10-6 (F cm-2 sn-1) | nos | Rct (Ω cm2) | Qdl × 10-5 (F cm-2 sn-1) | ndl | Rw × 10-3 (Ω cm2 s0.5) | χ2 × 10-4 |
---|---|---|---|---|---|---|---|---|---|---|
4 | 62.43 | 9240 | 9.472 | 0.7812 | 4532 | 9.515 | 0.6704 | 3.990 | 33.6 | |
7 | 63.93 | 7670 | 9.782 | 0.7677 | 4230 | 32.35 | 0.6876 | 2.819 | 27.2 | |
9 | 65.83 | 7309 | 10.43 | 0.7587 | 4089 | 30.72 | 0.7394 | 1.988 | 25.2 | |
10 | 67.41 | 7530 | 9.847 | 0.7646 | 4076 | 34.93 | 0.7453 | 1.753 | 27.8 | |
13 | 69.19 | 7729 | 9.300 | 0.7729 | 3869 | 42.18 | 0.7540 | 1.685 | 28.8 | |
0.5 wt.% | 14 | 69.28 | 7805 | 9.429 | 0.7722 | 3801 | 48.94 | 0.7625 | 1.932 | 29.4 |
15 | 69.32 | 7560 | 9.364 | 0.7755 | 3717 | 43.83 | 0.7185 | 1.880 | 29.2 | |
16 | 68.92 | 7340 | 10.45 | 0.7671 | 3674 | 42.69 | 0.6661 | 1.859 | 2.48 | |
17 | 65.41 | 7210 | 18.67 | 0.7075 | 3507 | 47.10 | 0.5865 | 1.588 | 1.50 | |
18 | 66.51 | 1347 | 15.12 | 0.7365 | 6863 | 2.913 | 0.5592 | 1.305 | 17.7 | |
20 | 67.80 | 862.0 | 0.763 | 0.7625 | 7517 | 6.197 | 0.7116 | 1.672 | 1.51 | |
4 | 9.865 | 2809 | 15.50 | 0.7695 | 3879 | 45.49 | 0.5868 | 17.14 | 5.71 | |
7 | 10.18 | 98.75 | 21.47 | 0.7438 | 3661 | 10.21 | 0.7040 | 1.910 | 11.8 | |
9 | 10.46 | 87.98 | 28.82 | 0.7205 | 3683 | 22.94 | 0.7438 | 2.128 | 5.14 | |
10 | 10.62 | 84.71 | 29.28 | 0.7201 | 3642 | 28.24 | 0.7519 | 2.415 | 4.29 | |
13 | 10.95 | 78.55 | 30.90 | 0.7177 | 3569 | 40.96 | 0.7501 | 3.352 | 1.71 | |
2.0 wt.% | 14 | 11.17 | 77.93 | 33.52 | 0.7104 | 3479 | 43.29 | 0.7558 | 3.227 | 2.44 |
15 | 11.22 | 74.11 | 35.45 | 0.7071 | 3378 | 44.25 | 0.7465 | 3.663 | 1.12 | |
16 | 11.35 | 77.26 | 37.58 | 0.7020 | 3311 | 44.88 | 0.7556 | 2.650 | 3.84 | |
17 | 11.41 | 79.76 | 39.64 | 0.6973 | 3271 | 45.68 | 0.7622 | 2.172 | 6.45 | |
18 | 11.44 | 80.84 | 42.17 | 0.6924 | 3267 | 47.03 | 0.7674 | 2.004 | 7.64 | |
20 | 11.52 | 81.98 | 45.66 | 0.6861 | 3319 | 51.27 | 0.7687 | 2.003 | 7.39 |
Table 1 Fitting parameters for the in-situ EIS data on comb-like SAC305 electrodes covered with NaCl electrolyte as a function of exposure time in atmosphere with 80 % RH at 25 °C.
NaCl solution | Exposure time (h) | Rs (Ω cm2) | Ros (Ω cm2) | Qos × 10-6 (F cm-2 sn-1) | nos | Rct (Ω cm2) | Qdl × 10-5 (F cm-2 sn-1) | ndl | Rw × 10-3 (Ω cm2 s0.5) | χ2 × 10-4 |
---|---|---|---|---|---|---|---|---|---|---|
4 | 62.43 | 9240 | 9.472 | 0.7812 | 4532 | 9.515 | 0.6704 | 3.990 | 33.6 | |
7 | 63.93 | 7670 | 9.782 | 0.7677 | 4230 | 32.35 | 0.6876 | 2.819 | 27.2 | |
9 | 65.83 | 7309 | 10.43 | 0.7587 | 4089 | 30.72 | 0.7394 | 1.988 | 25.2 | |
10 | 67.41 | 7530 | 9.847 | 0.7646 | 4076 | 34.93 | 0.7453 | 1.753 | 27.8 | |
13 | 69.19 | 7729 | 9.300 | 0.7729 | 3869 | 42.18 | 0.7540 | 1.685 | 28.8 | |
0.5 wt.% | 14 | 69.28 | 7805 | 9.429 | 0.7722 | 3801 | 48.94 | 0.7625 | 1.932 | 29.4 |
15 | 69.32 | 7560 | 9.364 | 0.7755 | 3717 | 43.83 | 0.7185 | 1.880 | 29.2 | |
16 | 68.92 | 7340 | 10.45 | 0.7671 | 3674 | 42.69 | 0.6661 | 1.859 | 2.48 | |
17 | 65.41 | 7210 | 18.67 | 0.7075 | 3507 | 47.10 | 0.5865 | 1.588 | 1.50 | |
18 | 66.51 | 1347 | 15.12 | 0.7365 | 6863 | 2.913 | 0.5592 | 1.305 | 17.7 | |
20 | 67.80 | 862.0 | 0.763 | 0.7625 | 7517 | 6.197 | 0.7116 | 1.672 | 1.51 | |
4 | 9.865 | 2809 | 15.50 | 0.7695 | 3879 | 45.49 | 0.5868 | 17.14 | 5.71 | |
7 | 10.18 | 98.75 | 21.47 | 0.7438 | 3661 | 10.21 | 0.7040 | 1.910 | 11.8 | |
9 | 10.46 | 87.98 | 28.82 | 0.7205 | 3683 | 22.94 | 0.7438 | 2.128 | 5.14 | |
10 | 10.62 | 84.71 | 29.28 | 0.7201 | 3642 | 28.24 | 0.7519 | 2.415 | 4.29 | |
13 | 10.95 | 78.55 | 30.90 | 0.7177 | 3569 | 40.96 | 0.7501 | 3.352 | 1.71 | |
2.0 wt.% | 14 | 11.17 | 77.93 | 33.52 | 0.7104 | 3479 | 43.29 | 0.7558 | 3.227 | 2.44 |
15 | 11.22 | 74.11 | 35.45 | 0.7071 | 3378 | 44.25 | 0.7465 | 3.663 | 1.12 | |
16 | 11.35 | 77.26 | 37.58 | 0.7020 | 3311 | 44.88 | 0.7556 | 2.650 | 3.84 | |
17 | 11.41 | 79.76 | 39.64 | 0.6973 | 3271 | 45.68 | 0.7622 | 2.172 | 6.45 | |
18 | 11.44 | 80.84 | 42.17 | 0.6924 | 3267 | 47.03 | 0.7674 | 2.004 | 7.64 | |
20 | 11.52 | 81.98 | 45.66 | 0.6861 | 3319 | 51.27 | 0.7687 | 2.003 | 7.39 |
Fig. 6. Evolutions in in-situ EIS data measured on SAC305 comb-like electrode covered by electrolyte layer (ca. 400 μm) exposed to atmosphere with 80 % RH at 45 °C as a function of exposure time. (a), (b) and (c): 0.5 wt.% NaCl electrolyte layer; (d), (e) and (f): 2.0 wt.% NaCl electrolyte layer.
Fig. 7. Evolutions in Rs and Rct fitted from in-situ EIS data on comb-like SAC305 electrodes covered with NaCl solution layers as a function of exposure time in atmosphere with 80 % RH at 45 °C.
NaCl solution | Exposure time (h) | Rs (Ω cm2) | Qs(F cm-2 sn-1) | ns | Ros (Ω cm2) | Qos × 10-6 (F cm-2 sn-1) | nos | Rct (Ω cm2) | Qdl × 10-6(F cm-2 sn-1) | ndl | Rw × 10-4 (Ω cm2 s0.5) | χ2×10-4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 111.1 | - | - | 49.13 | 5.059 | 0.7458 | 66570 | 6.276 | 0.7738 | 81.71 | 7.52 | |
7 | 122.7 | - | - | 378.4 | 9.161 | 0.7374 | 60600 | 6.575 | 0.8114 | 10.30 | 17.5 | |
9 | 126.1 | - | - | 562.9 | 9.090 | 0.7296 | 60640 | 9.754 | 0.7684 | 9.617 | 29.1 | |
10 | 126.9 | - | - | 1021 | 10.77 | 0.7003 | 43900 | 9.434 | 0.7527 | 32.00 | 25.0 | |
13 | 122.4 | - | - | 1450 | 13.67 | 0.6370 | 20400 | 19.56 | 0.5611 | 14.30 | 7.96 | |
0.5 wt.% | 14 | 117.9 | - | - | 1586 | 27.07 | 0.5682 | 13400 | 28.06 | 0.4254 | 23.74 | 27.0 |
15 | 117.5 | - | - | 1639 | 27.51 | 0.5647 | 11020 | 38.80 | 0.5018 | 24.00 | 37.2 | |
16 | 5212 | 9.319 × 10-8 | 0.4748 | 5976 | 4.958 | 0.4627 | 22380 | 25.00 | 0.5641 | 7.507 | 3.51 | |
17 | 9899 | 2.647 × 10-10 | 0.8776 | 5494 | 0.777 | 0.5762 | 61510 | 19.48 | 0.3724 | - | 7.74 | |
18 | 10150 | 4.952 × 10-10 | 0.8350 | 10230 | 0.857 | 0.5617 | 65550 | 17.16 | 0.4131 | - | 0.91 | |
20 | 10070 | 4.254 × 10-10 | 0.8493 | 22970 | 1.302 | 0.5008 | 76570 | 8.299 | 0.5282 | - | 3.70 | |
4 | 21.08 | - | - | 5959 | 11.73 | 0.7162 | 20830 | 83.28 | 0.5594 | 5.901 | 9.01 | |
7 | 23.49 | - | - | 6795 | 11.99 | 0.7073 | 22510 | 61.20 | 0.6425 | 4.097 | 6.37 | |
9 | 24.09 | - | - | 6483 | 12.77 | 0.7000 | 24520 | 60.60 | 0.6015 | 4.793 | 3.80 | |
10 | 24.07 | - | - | 6402 | 13.98 | 0.6913 | 20670 | 56.80 | 0.6206 | 4.480 | 2.48 | |
13 | 25.25 | - | - | 5229 | 17.08 | 0.6709 | 14570 | 70.68 | 0.5485 | 7.375 | 1.67 | |
2.0 wt.% | 14 | 25.33 | - | - | 4869 | 18.04 | 0.6639 | 11510 | 78.11 | 0.5324 | 8.296 | 2.22 |
15 | 567.0 | 1.760 × 10-5 | 0.7793 | 2123 | 4.955 | 0.4475 | 23340 | 15.46 | 0.7414 | 7.074 | 10.5 | |
16 | 4543 | 2.782 × 10-5 | 0.2169 | 10200 | 6.215 | 0.4888 | 27900 | 11.11 | 0.8561 | 11.54 | 3.07 | |
17 | 4298 | 4.529 × 10-5 | 0.1883 | 11300 | 7.886 | 0.4489 | 25600 | 9.854 | 0.9175 | 8.011 | 1.59 | |
18 | 4142 | 2.347 × 10-5 | 0.2270 | 10600 | 6.165 | 0.4879 | 27300 | 10.82 | 0.8706 | 9.805 | 0.61 | |
20 | 3920 | 1.047 × 10-5 | 0.2780 | 9042 | 2.673 | 0.5795 | 26500 | 15.17 | 0.7230 | 13.40 | 2.43 |
Table 2 Fitting parameters for the in-situ EIS data on comb-like SAC305 electrodes covered with NaCl electrolyte as a function of exposure time in atmosphere with 80 % RH at 45 °C.
NaCl solution | Exposure time (h) | Rs (Ω cm2) | Qs(F cm-2 sn-1) | ns | Ros (Ω cm2) | Qos × 10-6 (F cm-2 sn-1) | nos | Rct (Ω cm2) | Qdl × 10-6(F cm-2 sn-1) | ndl | Rw × 10-4 (Ω cm2 s0.5) | χ2×10-4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 111.1 | - | - | 49.13 | 5.059 | 0.7458 | 66570 | 6.276 | 0.7738 | 81.71 | 7.52 | |
7 | 122.7 | - | - | 378.4 | 9.161 | 0.7374 | 60600 | 6.575 | 0.8114 | 10.30 | 17.5 | |
9 | 126.1 | - | - | 562.9 | 9.090 | 0.7296 | 60640 | 9.754 | 0.7684 | 9.617 | 29.1 | |
10 | 126.9 | - | - | 1021 | 10.77 | 0.7003 | 43900 | 9.434 | 0.7527 | 32.00 | 25.0 | |
13 | 122.4 | - | - | 1450 | 13.67 | 0.6370 | 20400 | 19.56 | 0.5611 | 14.30 | 7.96 | |
0.5 wt.% | 14 | 117.9 | - | - | 1586 | 27.07 | 0.5682 | 13400 | 28.06 | 0.4254 | 23.74 | 27.0 |
15 | 117.5 | - | - | 1639 | 27.51 | 0.5647 | 11020 | 38.80 | 0.5018 | 24.00 | 37.2 | |
16 | 5212 | 9.319 × 10-8 | 0.4748 | 5976 | 4.958 | 0.4627 | 22380 | 25.00 | 0.5641 | 7.507 | 3.51 | |
17 | 9899 | 2.647 × 10-10 | 0.8776 | 5494 | 0.777 | 0.5762 | 61510 | 19.48 | 0.3724 | - | 7.74 | |
18 | 10150 | 4.952 × 10-10 | 0.8350 | 10230 | 0.857 | 0.5617 | 65550 | 17.16 | 0.4131 | - | 0.91 | |
20 | 10070 | 4.254 × 10-10 | 0.8493 | 22970 | 1.302 | 0.5008 | 76570 | 8.299 | 0.5282 | - | 3.70 | |
4 | 21.08 | - | - | 5959 | 11.73 | 0.7162 | 20830 | 83.28 | 0.5594 | 5.901 | 9.01 | |
7 | 23.49 | - | - | 6795 | 11.99 | 0.7073 | 22510 | 61.20 | 0.6425 | 4.097 | 6.37 | |
9 | 24.09 | - | - | 6483 | 12.77 | 0.7000 | 24520 | 60.60 | 0.6015 | 4.793 | 3.80 | |
10 | 24.07 | - | - | 6402 | 13.98 | 0.6913 | 20670 | 56.80 | 0.6206 | 4.480 | 2.48 | |
13 | 25.25 | - | - | 5229 | 17.08 | 0.6709 | 14570 | 70.68 | 0.5485 | 7.375 | 1.67 | |
2.0 wt.% | 14 | 25.33 | - | - | 4869 | 18.04 | 0.6639 | 11510 | 78.11 | 0.5324 | 8.296 | 2.22 |
15 | 567.0 | 1.760 × 10-5 | 0.7793 | 2123 | 4.955 | 0.4475 | 23340 | 15.46 | 0.7414 | 7.074 | 10.5 | |
16 | 4543 | 2.782 × 10-5 | 0.2169 | 10200 | 6.215 | 0.4888 | 27900 | 11.11 | 0.8561 | 11.54 | 3.07 | |
17 | 4298 | 4.529 × 10-5 | 0.1883 | 11300 | 7.886 | 0.4489 | 25600 | 9.854 | 0.9175 | 8.011 | 1.59 | |
18 | 4142 | 2.347 × 10-5 | 0.2270 | 10600 | 6.165 | 0.4879 | 27300 | 10.82 | 0.8706 | 9.805 | 0.61 | |
20 | 3920 | 1.047 × 10-5 | 0.2780 | 9042 | 2.673 | 0.5795 | 26500 | 15.17 | 0.7230 | 13.40 | 2.43 |
Fig. 8. Morphology observation and Raman spectra identification of as-corroded SAC305 solder samples after the evaporation out of surface covered 2.0 wt.% NaCl electrolyte layer in atmosphere with 80 % RH. (a) and (a') 25 °C; (b) and (b') 45 °C.
Fig. 9. XRD pattens on as-corroded SAC305 solder samples after the evaporation out of surface covered 2.0 wt.% NaCl electrolyte layer in atmosphere with 80 % RH. (a) 25 °C and (b) 45 °C.
Fig. 10. Surface morphologies of as-corroded SAC305 samples covered with 2.0 wt.% NaCl electrolyte layer as a function of exposure time in atmosphere with 80 % RH at 25 °C and 45 °C. Before characterization, the sample surface was rinsed with deionized water to remove residual NaCl electrolyte, followed by drying itself naturally in indoor atmosphere.
Fig. 11. EPMA mapping of the corroded SAC305 sample covered with 2.0 wt.% NaCl electrolyte layer after 20 h exposure to atmosphere with 80 % RH at 25 °C. Before characterization, the sample surface was rinsed with deionized water to remove residual NaCl electrolyte, followed by drying itself naturally in indoor atmosphere.
Fig. 12. Schematic diagram illustrating the corrosion mechanism of SAC305 solder covered with NaCl electrolyte layers, and the effects by NaCl deposition and temperature in marine atmosphere.
[1] |
Y. Li, K. Moon, C. Wong, Science 308 (2005) 1419-1420.
DOI URL |
[2] |
M.F.M. Nazeri, M.Z. Yahaya, A. Gursel, F. Cheani, M.N. Masri, A.A. Mohamad, Solder. Surf. Mt. Technol. 31 (2019) 52-67.
DOI URL |
[3] |
G. Liu, S. Khorsand, S. Ji, J. Mater. Sci. Technol. 35 (2019) 1618-1628.
DOI URL |
[4] |
M.O.A. And, Y.C. Chan, K.N. Tu, Chem. Mater. 15 (2003) 4340-4342.
DOI URL |
[5] |
K.S. Kim, S.H. Huh, K. Suganuma, Mater. Sci. Eng. A 333 (2002) 106-114.
DOI URL |
[6] |
M. Wang, C. Qiao, X. Jiang, L. Hao, X. Liu, J. Mater. Sci. Technol. 51 (2020) 40-53.
DOI URL |
[7] |
J.C. Liu, G. Zhang, J.S. Ma, K. Suganuma, J. Alloys. Compd. 644 (2015) 113-118.
DOI URL |
[8] |
J.C. Liu, S. Park, S. Nagao, M. Nogi, H. Koga, J.S. Ma, G. Zhang, K. Suganuma, Corros. Sci. 92 (2015) 263-271.
DOI URL |
[9] |
Z. Wang, C. Chen, J. Liu, G. Zhang, K. Suganuma, Corros. Sci. 140 (2018) 40-50.
DOI URL |
[10] |
L.M. Satizabal, D. Costa, P.B. Moraes, A.D. Bortolozo, W.R. Osório, Mater. Chem. Phys. 223 (2019) 410-425.
DOI |
[11] | C. Leygraf, T.E. Graedel, Atmospheric Corrosion, John Wiley & Sons, New York, 2000. |
[12] |
X. Zhong, G. Zhang, Y. Qiu, Z. Chen, X. Guo, Corros. Sci. 74 (2013) 71-82.
DOI URL |
[13] |
X. Zhong, G. Zhang, Y. Qiu, Z. Chen, X. Guo, C. Fu, Corros. Sci. 66 (2013) 14-25.
DOI URL |
[14] |
P. Eckold, M. Rolff, R. Niewa, W. Hügel, Corros. Sci. 98 (2015) 399-405.
DOI URL |
[15] |
J. Morales, S. Martín-Krijer, F. Díaz, J. Hernández-Borges, S. González, Corros. Sci. 47 (2005) 2005-2019.
DOI URL |
[16] | X. Wang, X. Li, X. Tian, Int. J. Electrochem. Sci. 10 (2015) 8361-8373. |
[17] |
S. Li, L.H. Hihara, J. Electrochem. Soc. 159 (2012) C147-C154.
DOI URL |
[18] |
T. Shinohara, S.-i. Motoda, W. Oshikawa, Mater. Sci. Forum. 475-479 (2005) 61-64.
DOI URL |
[19] |
B. Liao, H. Cen, Z. Chen, X. Guo, Corros. Sci. 143 (2018) 347-361.
DOI URL |
[20] |
S. Wan, J. Hou, Z. Zhang, X. Zhang, Z. Dong, Corros. Sci. 150 (2019) 246-257.
DOI URL |
[21] |
M. Esmaily, M. Shahabi-Navid, J.E. Svensson, M. Halvarsson, L. Nyborg, Y. Cao, L.G. Johansson, Corros. Sci. 90 (2015) 420-433.
DOI URL |
[22] | S. Yariv, H. Cross, Physical Chemistry of Surfaces, Springer, Berlin Heidelberg, 1979. |
[23] |
J. Wu, J.P. Cui, Q.J. Zheng, S.D. Zhang, W.H. Sun, B.J. Yang, J.Q. Wang, Electrochim. Acta 319 (2019) 966-980.
DOI |
[24] |
Y. Shi, E. Tada, A. Nishikata, J. Electrochem. Soc. 162 (2015) C135-C139.
DOI URL |
[25] |
C. Somphotch, H. Hayashibara, A. Ooi, E. Tada, A. Nishikata, J. Electrochem. Soc. 165 (2018) C590-C600.
DOI URL |
[26] |
M. Wang, J. Wang, H. Feng, W. Ke, Corros. Sci. 63 (2012) 20-28.
DOI URL |
[27] |
M. Wang, J. Wang, H. Feng, W. Ke, J. Mater. Sci. -Mater. Electron. 23 (2012) 148-155.
DOI URL |
[28] |
M. Wang, J. Wang, W. Ke, J. Mater. Sci.-Mater. Electron 25 (2014) 1228-1236.
DOI URL |
[29] |
N. LeBozec, M. Jönsson, D. Thierry, Corrosion 60 (2004) 356-361.
DOI URL |
[30] |
F. Rosalbino, E. Angelini, G. Zanicchi, R. Marazza, Mater. Chem. Phys. 109 (2008) 386-391.
DOI URL |
[31] |
C. Thee, L. Hao, J. Dong, X. Mu, X. Wei, X. Li, W. Ke, Corros. Sci. 78 (2014) 130-137.
DOI URL |
[32] |
Z. Pei, X. Cheng, X. Yang, Q. Li, C. Xia, D. Zhang, X. Li, J. Mater. Sci. Technol. 64 (2021) 214-221.
DOI URL |
[33] |
D.H. Xia, S.Z. Song, Z. Qin, W.B. Hu, Y. Behnamian, J. Electrochem. Soc. 167 (2020) 037513.
DOI URL |
[34] |
D.H. Xia, C. Ma, S.Z. Song, L. Xu, J. Electrochem. Soc. 166 (2019) B1000-B1009.
DOI URL |
[35] |
I.S. Cole, W.D. Ganther, D.A. Paterson, G.A. King, S.A. Furman, D. Lau, Corros. Eng.-Sci. Technol. 38 (2003) 259-266.
DOI URL |
[36] |
L. Sangaletti, L.E. Depero, B. Allieri, F. Pioselli, E. Comini, G. Sberveglieri, M. Zocchi, J. Mater. Res. 13 (1998) 2457-2460.
DOI URL |
[37] |
J. Szuber, G. Czempik, R. Larciprete, D. Koziej, B. Adamowicz, Thin Solid Films 391 (2001) 198-203.
DOI URL |
[38] | E. Barsoukov, J.R. Macdonald (Eds.), Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed., John Wiley & Sons, Hoboken, New Jersey and Canada, 2005. |
[39] |
J.C. Liu, Z.H. Wang, J.Y. Xie, J.S. Ma, Q.Y. Shi, G. Zhang, K. Suganuma, Corros. Sci. 112 (2016) 150-159.
DOI URL |
[40] |
F. Mansfeld, C.H. Tsai, Corrosion 47 (1991) 958-963.
DOI URL |
[41] |
C.H. Tsai, F. Mansfeld, Corrosion 49 (1993) 726-737.
DOI URL |
[42] |
J. Katić, M. Metikoš-Huković, I. Šarić, J. Electrochem. Soc. 163 (2016) C221-C227.
DOI URL |
[43] |
L. Zaraska, D. Gilek, K. Gawlak, M. Jaskuła, G.D. Sulka, Appl. Surf. Sci. 390 (2016) 31-37.
DOI URL |
[44] |
Z.Y. Chen, D. Persson, C. Leygraf, Corros. Sci. 50 (2008) 111-123.
DOI URL |
[45] |
F. Corvo, T. Pérez, Y. Martin, J. Reyes, L.R. Dzib, J. González-Sánchez, A. Castañeda, Corros. Sci. 50 (2008) 206-219.
DOI URL |
[46] |
R.M. Katona, S. Tokuda, J. Perry, R.G. Kelly, Corros. Sci. 175 (2020) 108849.
DOI URL |
[47] | T. Chang, A. Maltseva, P. Volovitch, I.O. Wallinder, C. Leygraf, Corros. Sci. (2020) 108477. |
[48] |
A.F. Shihada, A.S. Abushamleh, F. Weller, Zeitschrift für anorganische und allgemeine Chemie. 630 (2004) 841-847.
DOI URL |
[49] |
A. Dieguez, A. Romanorodriguez, A. Vila, J.R. Morante, J. Appl. Phys. 90 (2001) 1550-1557.
DOI URL |
[50] |
T. Pagnier, M. Boulova, N. Sergent, P. Bouvier, G. Lucazeau, J. Raman Spectrosc. 38 (2007) 756-761.
DOI URL |
[51] |
F. Ospitali, C. Chiavari, C. Martini, E. Bernardi, F. Passarini, L. Robbiola, J. Raman Spectrosc. 43 (2012) 1596-1603.
DOI URL |
[52] |
J.C. Liu, G. Zhang, S. Nagao, J.T. Jiu, M. Nogi, T. Sugahara, J.S. Ma, K. Suganuma, Corros. Sci. 99 (2015) 154-163.
DOI URL |
[53] |
H. Wang, A.L. Rogach, Chem. Mater. 26 (2014) 123-133.
DOI URL |
[54] |
F. Rosalbino, E. Angelini, G. Zanicchi, R. Carlini, R. Marazza, Electrochim. Acta 54 (2009) 7231-7235.
DOI URL |
[55] |
C. Qiao, M.N. Wang, L. Hao, X.L. Jiang, X.H. Liu, Ch. Thee, X.Z. An, J. Alloys. Compd. 852 (2021) 156953.
DOI URL |
[56] | N. Perez, Electrochemistry and Corrosion Science, Springer, Netherlands, 2004. |
[1] | Zhongdi Yu, Minghui Chen, Jinlong Wang, Fengjie Li, Shenglong Zhu, Fuhui Wang. Enamel coating for protection of the 316 stainless steel against tribo-corrosion in molten zinc alloy at 460 °C [J]. J. Mater. Sci. Technol., 2021, 65(0): 126-136. |
[2] | Ping Deng, Qunjia Peng, En-Hou Han, Wei Ke, Chen Sun. Proton irradiation assisted localized corrosion and stress corrosion cracking in 304 nuclear grade stainless steel in simulated primary PWR water [J]. J. Mater. Sci. Technol., 2021, 65(0): 61-71. |
[3] | Jianwen Nie, Chaoyue Chen, Longtao Liu, Xiaodong Wang, Ruixin Zhao, Sansan Shuai, Jiang Wang, Zhongming Ren. Effect of substrate cooling on the epitaxial growth of Ni-based single-crystal superalloy fabricated by direct energy deposition [J]. J. Mater. Sci. Technol., 2021, 62(0): 148-161. |
[4] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
[5] | Hao Ding, Xiping Cui, Naonao Gao, Yuan Sun, Yuanyuan Zhang, Lujun Huang, Lin Geng. Fabrication of (TiB/Ti)-TiAl composites with a controlled laminated architecture and enhanced mechanical properties [J]. J. Mater. Sci. Technol., 2021, 62(0): 221-23. |
[6] | Bangalore Gangadharacharya Koushik, Nils Van den Steen, Mesfin Haile Mamme, Yves Van Ingelgem, Herman Terryn. Review on modelling of corrosion under droplet electrolyte for predicting atmospheric corrosion rate [J]. J. Mater. Sci. Technol., 2021, 62(0): 254-267. |
[7] | Zibo Pei, Xuequn Cheng, Xiaojia Yang, Qing Li, Chenhan Xia, Dawei Zhang, Xiaogang Li. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors [J]. J. Mater. Sci. Technol., 2021, 64(0): 214-221. |
[8] | Rajendra Kurapati, Vincent Maurice, Antoine Seyeux, Lorena H. Klein, Dimitri Mercier, Grégory Chauveau, Catherine Grèzes-Besset, Loïc Berthod, Philippe Marcus. Advanced protection against environmental degradation of silver mirror stacks for space application [J]. J. Mater. Sci. Technol., 2021, 64(0): 1-9. |
[9] | Fangqiang Ning, Jibo Tan, Ziyu Zhang, Xinqiang Wu, Xiang Wang, En-Hou Han, Wei Ke. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66(0): 163-176. |
[10] | Li Sun, Xiaobo Ren, Jianying He, Zhiliang Zhang. Numerical investigation of a novel pattern for reducing residual stress in metal additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 67(0): 11-22. |
[11] | Nana Zhao, Fengchu Zhang, Fei Zhan, Ding Yi, Yijun Yang, Weibin Cui, Xi Wang. Fe 3+-stabilized Ti3C2Tx MXene enables ultrastable Li-ion storage at low temperature [J]. J. Mater. Sci. Technol., 2021, 67(0): 156-164. |
[12] | Kaiming Cheng, Jiaxing Sun, Huixia Xu, Jin Wang, Chengwei Zhan, Reza Ghomashchi, Jixue Zhou, Shouqiu Tang, Lijun Zhang, Yong Du. Diffusion growth of ϕ ternary intermetallic compound in the Mg-Al-Zn alloy system: In-situ observation and modeling [J]. J. Mater. Sci. Technol., 2021, 60(0): 222-229. |
[13] | Xiaofang Ye, Hongkun Cai, Jian Su, Jingtao Yang, Jian Ni, Juan Li, Jianjun Zhang. Preparation of hysteresis-free flexible perovskite solar cells via interfacial modification [J]. J. Mater. Sci. Technol., 2021, 61(0): 213-220. |
[14] | A.N.M. Tanvir, Md. R.U. Ahsan, Gijeong Seo, Brian Bates, Chanho Lee, Peter K. Liaw, Mark Noakes, Andrzej Nycz, Changwook Ji, Duck Bong Kim. Phase stability and mechanical properties of wire + arc additively manufactured H13 tool steel at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 67(0): 80-94. |
[15] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||