J. Mater. Sci. Technol. ›› 2021, Vol. 75: 265-275.DOI: 10.1016/j.jmst.2020.10.021
• Research Article • Previous Articles
Zhixin Zhanga,c, Jiangkun Fana,b,*(), Ruifeng Lic, Hongchao Koua,b, Zhiyong Chend, Qingjiang Wangd, Hailong Zhangc, Jian Wange, Qi Gaoe, Jinshan Lia,b,*(
)
Received:
2020-05-04
Revised:
2020-07-15
Accepted:
2020-07-29
Published:
2020-10-21
Online:
2020-10-21
Contact:
Jiangkun Fan,Jinshan Li
About author:
ljsh@nwpu.edu.cn (J. Li).Zhixin Zhang, Jiangkun Fan, Ruifeng Li, Hongchao Kou, Zhiyong Chen, Qingjiang Wang, Hailong Zhang, Jian Wang, Qi Gao, Jinshan Li. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet[J]. J. Mater. Sci. Technol., 2021, 75: 265-275.
Fig. 2. Microstructure and texture of the as received Ti65 alloy sheet: OIM maps of ND (a) and RD (b), KAM map (c), three dimensional ODF (d), constant φ2 = 0° (e) and φ2 = 30° ODF maps (f), PFs by EBSD (g), PFs by XRD (h).
Fig. 3. Tensile stress-strain and displacement-time curves of Ti65 alloy sheet performed at 650 ℃ along (a) (c) Tensile-T, and (b) (d) Tensile-R. The fracture specimen images are inserted in (a) and (b).
T (℃) | Specimen direction | UTS (MPa) | DR UTS (%) | TYS (MPa) | DR TYS (%) | Fracture strain (%) |
---|---|---|---|---|---|---|
650 | TD | 746 | 8.3 | 500 | 5.0 | 33.7 |
RD | 684 | 475 | 29.0 | |||
20 [ | TD | 1149 | 4.8 | 1043 | 5.8 | 9.4 |
RD | 1094 | 983 | 9.3 |
Table 1 Tensile properties of Ti65 alloy sheets at 650 ℃ and ambient temperature.
T (℃) | Specimen direction | UTS (MPa) | DR UTS (%) | TYS (MPa) | DR TYS (%) | Fracture strain (%) |
---|---|---|---|---|---|---|
650 | TD | 746 | 8.3 | 500 | 5.0 | 33.7 |
RD | 684 | 475 | 29.0 | |||
20 [ | TD | 1149 | 4.8 | 1043 | 5.8 | 9.4 |
RD | 1094 | 983 | 9.3 |
Fig. 5. Creep displacement-time curves and fracture specimen images of Ti65 alloy sheet performed at 650 ℃ and 240 MPa: (a) Creep-T1, (b) Creep-T2, (c) Creep-L1 and (d) Creep-L2.
Specimen | Elongation (mm) | DR Elongation (%) | Endurance time (h) | DR Endurance time (%) |
---|---|---|---|---|
Creep-T1 | 8.4 | 112.0 | 174.5 | 65.2 |
Creep-T2 | 7.4 | 172.6 | ||
Creep-R1 | 15.5 | 65.1 | ||
Creep-R2 | 18.0 | 55.6 |
Table 2 Creep properties of Ti65 alloy sheets at 650 ℃ and 240 MPa.
Specimen | Elongation (mm) | DR Elongation (%) | Endurance time (h) | DR Endurance time (%) |
---|---|---|---|---|
Creep-T1 | 8.4 | 112.0 | 174.5 | 65.2 |
Creep-T2 | 7.4 | 172.6 | ||
Creep-R1 | 15.5 | 65.1 | ||
Creep-R2 | 18.0 | 55.6 |
Fig. 6. OIM maps, 3D ODFs and KAM maps of Ti65 alloy sheet for creep tests at 650 ℃ and 240 MPa: (a), (b), (c), (d) Creep-T1, (e), (f), (g), (h) Creep-R1.
Fig. 7. SEM images of fracture morphology for (a) Tensile-T, (d) Tensile-R, (b) (c) Creep-T1, and (e) (f) Creep-R1 specimens performed at 650 ℃. The macro fracture appearances are inserted in (a), (b), (d) and (e).
Fig. 8. Normalized steady creep rate vs. applied stress plot of (a) TD and (d) RD. Micrographs of (b), (c) Creep-T1 and (e), (f) Creep-R1 depicting the presence of different creep regimes at 650 ℃.
Fig. 9. Schmid factors (SFs) histogram obtained by EBSD of α phase with Basal <a>, Prismatic <a>, Pyramidal <a> and Pyramidal < c + a >slip systems for as received Ti65 alloy sheet along (a) TD and (b) RD.
[1] | Q.J. Wang, J.R. Liu, R. Yang, J. Aeronaut. Mater. 34 (2014) 1-26. |
[2] |
Z.X. Zhang, J.K. Fan, B. Tang, H.C. Kou, J. Wang, Z.Y. Chen, J.S. Li, Prog. Nat. Sci. 30 (2020) 86-93.
DOI URL |
[3] |
Z.X. Zhang, J.K. Fan, B. Tang, H.C. Kou, J. Wang, X. Wang, Z.Y. Chen, J.S. Li, J. Mater. Sci. Technol. 49 (2020) 56-69.
DOI URL |
[4] | Christoph Leyens, Manfred Peters, Titanium and Titanium Alloys Fundamentals and Applications, German Aerospace Center Institute of Materials Research, Germany, 2004, pp. 23-25. |
[5] | J. Matthew, Titanium: A Technical Guide, ASM International, America, 2000, pp. 18. |
[6] | X.X. Wang, W.Q. Wang, H.H. Ma, Chin. J. Nonferrous Met. 20 (2010) 792-795. |
[7] |
W.J. Zhang, X.Y. Song, S.X. Hui, W.J. Ye, Y.L. Wang, W.Q. Wang, Mater. Sci. Eng. A 595 (2014) 159-164.
DOI URL |
[8] |
W.Y. Li, Z.Y. Chen, J.R. Liu, Q.J. Wang, G.X. Sui, Mater. Sci. Eng. A 688 (2017) 322-329.
DOI URL |
[9] |
S. Balasubramanian, L. Anand, Acta Mater. 50 (2002) 133-148.
DOI URL |
[10] |
D.G. Leo Prakash, P. Honniball, D. Rugg, P.J. Withers, J. Quint da Fonseca, M. Preuss, Acta Mater. 61 (2013) 3200-3213.
DOI URL |
[11] |
R.W. Hayes, G.B. Viswanathan, M.J. Mills, Acta Mater. 50 (2002) 4953-4963.
DOI URL |
[12] |
S. Gollapudi, I. Charit, K.L. Murty, Acta Mater. 56 (2008) 2406-2419.
DOI URL |
[13] |
C.J. Boehlert, Z. Chen, I. Gutiérrez-Urrutia, J. Llorc, M.T. Pérez-Prado, Acta Mater. 60 (2012) 1889-1904.
DOI URL |
[14] |
G.B. Viswanathan, S. Karthikeyan, R.W. Hayes, Acta Mater. 50 (2002) 4965-4980.
DOI URL |
[15] |
A. Clement, P. Coulomb, Scr. Metall. 13 (1979) 899-901.
DOI URL |
[16] |
H.J. Bunge, C. Esling, Scr. Metall. 18 (1984) 191-195.
DOI URL |
[17] |
K. Zhang, K.V. Yang, S. Lim, X. Wu, C.H.J. Davies, Int. J. Fatigue 104 (2017) 1-11.
DOI URL |
[18] |
Y.T. Wu, C.H. Koo, Intermetallics 5 (1997) 29-36.
DOI URL |
[19] |
M. Nakai, M. Niinomi, J. Hieda, K. Cho, Y. Nagasawa, T. Konno, Y. Ito, Y. Itsumi, H. Oyama, Mater. Sci. Eng. A 594 (2014) 103-110.
DOI URL |
[20] | Anubhav Singh, Shamik Basak, P.S. Lin Prakash, J.Manuf. Process. 33 (2018) 256-267. |
[21] |
W.X. Yu, Y.F. Lv, S.K. Li, Y. Wang, B.B. Li, Z.Q. Liao, Mater. Sci. Eng. A 639 (2015) 314-319.
DOI URL |
[22] | W.Y. Li, J.R. Liu, Z.Y. Chen, Z.Z. Bo, Q.J. Wang, Chi. J. Mater. Res. 32 (2016) 455-463. |
[23] |
S.S. Satheesh Kumar, B. Pavithra, Vajinder Singh, P. Ghosal, T. Raghu, Mater. Sci. Eng. A 747 (2019) 1-16.
DOI URL |
[24] | W.D. Callister, D. Rethwisch, Materials Science and Engineering, John Wiley & Sons, 2014, pp. 222-225. |
[25] | S.Ya. Betsofen, A.A. Ilyin, V.V. Plikhunov, A.D. Plotnikov, A.A. Filatov, Russian Metall. 5 (2007) 387-393. |
[26] | John J. Burke, Volker Weiss, Advances in Deformation Processing, Plenum Press, New York, 1978, pp. 326-335. |
[27] |
M. Rautenberg, X. Feaugas, D. Poquillon, J.M. Cloué, Acta Mater. 60 (2012) 4319-4327.
DOI URL |
[28] |
Y.X. Zhang, Z.Y. Xiao, Q.H. Huo, L. Luo, K.Y. Li, A. Hashimoto, X.Y. Yang, Mater. Sci. Eng. A 766 (2019), 138336.
DOI URL |
[29] | L.B. Ren, J. Wang, H.W. Wang, D. Chen, Chinese Patent. NO.CN 202105866 U. |
[30] | GB/T 228.2-2015, Metallic materials-Tensile testing-Part 2: Method of test at elevated temperature. |
[31] | GB/T 2039-2012, Metallic materials-Uniaxial creep testing method in tension. |
[32] |
Z.X. Zhang, J.K. Fan, Z.H. Wu, D. Zhao, Q. Gao, Q.B. Wang, Z.Y. Chen, B. Tang, H.C. Kou, J.S. Li, J. Alloys Compd. 831 (2020), 154786.
DOI URL |
[33] | K.V.S. Srinadh, N. Singh, V.S. Bull, Mater. Sci. 30 (2007) 595-600. |
[34] |
L.S. Tóth, R.A. Massion, L. Germain, S.C. Baik, S. Suwas, Acta Mater. 52 (2008) 1885-1898.
DOI URL |
[35] |
R. Panicker, A.H. Chokshi, R.K. Mishra, R. Verm, P.E. Krajewski, Acta Mater. 57 (2009) 3683-3693.
DOI URL |
[36] |
T. Yea, S.B. Lin, Y.F. Liang, Mater. Charact. 136 (2018) 41-51.
DOI URL |
[37] |
R. Muñoz-Moreno, E.M. Ruiz-Navas, C.J. Boehlert, J. Llorca, J.M. Torralba, M.T. Pérez-Prado, Mater. Sci. Eng. A 606 (2014) 276-289.
DOI URL |
[38] |
C. Du, J.P.M. Hoefnagels, R. Vaes, M.G.D. Geers, Scr. Mater. 120 (2016) 37-40.
DOI URL |
[39] |
E. Alabort, P. Kontis, D. Barba, K. Dragnevski, R.C. Reed, Acta Mater. 105 (2016) 449-463.
DOI URL |
[40] |
B.M. Morrow, R.W. Kozar, K.R. Anderson, Acta Mater. 61 (2013) 4452-4460.
DOI URL |
[41] | W.H. Richard, P.V. Richard, J.L. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 5th ed., John Wiley & Sons, New York, 2012, pp. 7-8. |
[42] |
Z. Yan, K. Wang, Y. Zhou, X. Zhu, R. Xin, Q. Liu, Scr. Mater. 156 (2018) 110-114.
DOI URL |
[43] |
K. Zhang, K.V. Yang, S. Lim, X. Wu, C.H.J. Davies, Int. J. Fatigue 104 (2017) 1-11.
DOI URL |
[1] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
[2] | Seong-Woo Choi, Jae Suk Jeong, Jong Woo Won, Jae Keun Hong, Yoon Suk Choi. Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation [J]. J. Mater. Sci. Technol., 2021, 66(0): 193-201. |
[3] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[4] | Jiayi Zhang, Yan Jin Lee, Hao Wang. Mechanochemical effect on the microstructure and mechanical properties in ultraprecision machining of AA6061 alloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 228-238. |
[5] | Jia Sun, Min Qi, Jinhu Zhang, Xuexiong Li, Hao Wang, Yingjie Ma, Dongsheng Xu, Jiafeng Lei, Rui Yang. Formation mechanism of α lamellae during β→α transformation in polycrystalline dual-phase Ti alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 98-108. |
[6] | Baoguo Yuan, Xing Liu, Jiangfei Du, Qiang Chen, Yuanyuan Wan, Yunliang Xiang, Yan Tang, Xiaoxue Zhang, Zhongyue Huang. Effects of hydrogenation temperature on room-temperature compressive properties of CMHT-treated Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 132-143. |
[7] | Chaoyue Chen, Yingchun Xie, Longtao Liu, Ruixin Zhao, Xiaoli Jin, Shanqing Li, Renzhong Huang, Jiang Wang, Hanlin Liao, Zhongming Ren. Cold spray additive manufacturing of Invar 36 alloy: microstructure, thermal expansion and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 72(0): 39-51. |
[8] | Yinling Zhang, Zhuo Chen, Shoujiang Qu, Aihan Feng, Guangbao Mi, Jun Shen, Xu Huang, Daolun Chen. Multiple α sub-variants and anisotropic mechanical properties of an additively-manufactured Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 113-124. |
[9] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[10] | Hongliang Su, Liang Huang, Jianjun Li, Wang Xiao, Hui Zhu, Fei Feng, Hongwei Li, Siliang Yan. Formability of AA 2219-O sheet under quasi-static, electromagnetic dynamic, and mechanical dynamic tensile loadings [J]. J. Mater. Sci. Technol., 2021, 70(0): 125-135. |
[11] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: I. Model building and fatigue strength prediction [J]. J. Mater. Sci. Technol., 2021, 70(0): 233-249. |
[12] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[13] | J.X. Hou, X.Y. Li, K. Lu. Orientation dependence of mechanically induced grain boundary migration in nano-grained copper [J]. J. Mater. Sci. Technol., 2021, 68(0): 30-34. |
[14] | Yu Fu, Wenlong Xiao, Junshuai Wang, Lei Ren, Xinqing Zhao, Chaoli Ma. A novel strategy for developing α + β dual-phase titanium alloys with low Young’s modulus and high yield strength [J]. J. Mater. Sci. Technol., 2021, 76(0): 122-128. |
[15] | Min Yang, Jun Zhang, Weimin Gui, Songsong Hu, Zhuoran Li, Min Guo, Haijun Su, Lin Liu. Coupling phase field with creep damage to study γʹ evolution and creep deformation of single crystal superalloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 129-137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||