J. Mater. Sci. Technol. ›› 2021, Vol. 60: 222-229.DOI: 10.1016/j.jmst.2020.05.026
• Research Article • Previous Articles
Kaiming Chenga,*(), Jiaxing Suna, Huixia Xub, Jin Wanga, Chengwei Zhana, Reza Ghomashchia,c, Jixue Zhoua,*(), Shouqiu Tanga, Lijun Zhangd, Yong Dua,d
Received:
2019-12-31
Revised:
2019-12-31
Accepted:
2019-12-31
Published:
2021-01-10
Online:
2021-01-22
Contact:
Kaiming Cheng,Jixue Zhou
Kaiming Cheng, Jiaxing Sun, Huixia Xu, Jin Wang, Chengwei Zhan, Reza Ghomashchi, Jixue Zhou, Shouqiu Tang, Lijun Zhang, Yong Du. Diffusion growth of ϕ ternary intermetallic compound in the Mg-Al-Zn alloy system: In-situ observation and modeling[J]. J. Mater. Sci. Technol., 2021, 60: 222-229.
Fig. 1. The computed isothermal section of Mg-Al-Zn at 633 K according to the previous thermodynamic description of Mg-Al-Zn system using Thermo-Calc software [14,30]. The composition of two end-members, i.e. Mg and τ phase, of the diffusion couples are shown as red dots. The red dashed line is the hypothetical diffusion path that goes across ? phase.
No. | Nominal composition | Actual composition | ||||
---|---|---|---|---|---|---|
Mg | Al | Zn | Mg | Al | Zn | |
1 | 39 | 30 | 31 | 39.42 | 27.45 | 33.13 |
2 | 39 | 30 | 31 | 39.55 | 26.97 | 33.47 |
3 | 39 | 30 | 31 | 39.88 | 26.14 | 33.98 |
4 | 39 | 30 | 31 | 39.69 | 26.15 | 34.16 |
Table 1 The nominal and actual compositions of the τ phase Alloys (at.%).
No. | Nominal composition | Actual composition | ||||
---|---|---|---|---|---|---|
Mg | Al | Zn | Mg | Al | Zn | |
1 | 39 | 30 | 31 | 39.42 | 27.45 | 33.13 |
2 | 39 | 30 | 31 | 39.55 | 26.97 | 33.47 |
3 | 39 | 30 | 31 | 39.88 | 26.14 | 33.98 |
4 | 39 | 30 | 31 | 39.69 | 26.15 | 34.16 |
Fig. 4. EMPA result of element distribution in each phase region along diffusion direction after annealing at 360 °C for (a) 4 h, (b) 16 h, (c) 49 h and (d) 100 h. The open symbols are experimental data, while the solid lines are simulation results using the composition-dependent interdiffusion coefficients estimated in this work.
Fig. 5. Diffusion path of 100 h heated Mg-τ diffusion couple along with the isothermal section of Mg-Al-Zn system at 360 °C: (a) whole composition range, (b) enlargement of the Mg-rich corner, (c) enlargement of the ? phase region and (d) enlargement of the τ phase region.
Fig. 6. In-situ observation of the diffusion growth of ? phase at 360 °C using HTLSCM. $W_0^\phi$ is the initial layer width of ? phase at the starting point of observation, i.e. t0 = 3089 s. $\Delta W_{\text{r}}^\phi$ and $\Delta W_{\text{l}}^\phi$ are the increment of IMC layer thickness at the Mg/? and ?/τ interfaces, respectively.
Fig. 7. In-situ observation data (open circle) of the layer thickness depending on the square root of annealing time together with the SEM data (open square). The dashed line is fitting result to the SEM data, while the solid line is the simulation result using current interdiffusion coefficients.
Fig. 8. Interdiffusion flux of Mg-τ diffusion couples annealed at 360 °C for 4 h, 16 h, 49 h and 100 h in each phase region computed by numerical inverse methods (solid lines) along with the current experimental data (open symbols).
Fig. 9. 3-D plot of composition-dependent interdiffusion coefficients: (a) along the Mg-τ diffusion path; (b) in Mg solid-solution phase; (c) in ? phase; (d) in τ phase.
[1] | K. Braszczynska-malik, Magnesium Alloys: Design, Processing and Properties, InTech, 2011. |
[2] | B.L. Mordike, T. Ebert, Mater. Sci. Eng. A 302 (2001) 37-45. |
[3] | K.U. Kainer, Magnesium Alloys and Their Applications, Wiley, 2000. |
[4] | Z. Zhang, A. Couture, A. Luo, Scr. Mater. 39(1998) 45-53. |
[5] | L. Bourgeois, B.C. Muddle, J.F. Nie, Acta Mater. 49(2001) 2701-2711. |
[6] | Y. Wang, S. Guan, X. Zeng, W. Ding, Mater. Sci. Eng. A 416 (2006) 109-118. |
[7] | M.A. Suarez, O. Alvarez, M.A. Alvarez, R.A. Rodriguez, S. Valdez, J.A. Juarez, J. Alloys. Compd. 492(2010) 373-377. |
[8] | J. Soto, G. Aramburo, C. Gonzalez, J. Genesca, R. Herrera, J.A. Juarez-Islas, Mater. Sci. Eng. A 408 (2005) 303-308. |
[9] | J. Zhang, Z.X. Guo, F. Pan, Z. Li, X. Luo, Mater. Sci. Eng. A 456 (2007) 43-51. |
[10] | H. Feng, S. Liu, Y. Du, T. Lei, R. Zeng, T. Yuan, J. Alloys. Compd. 695(2017) 2330-2338. |
[11] | J. Zhang, R. Zuo, Y. Chen, F. Pan, X. Luo, J. Alloys. Compd. 448(2008) 316-320. |
[12] | C.R. Hutchinson, J.F. Nie, S. Gorsse, Metall. Mater. Trans. A 36 (2005) 2093-2105. |
[13] | C. Mondal, A.K. Mukhopadhyay, Mater. Sci. Eng. A 391 (2005) 367-376. |
[14] | P. Liang, T. Tarfa, J. Robinson, S. Wagner, P. Ochin, M. Harmelin, H. Seifert, H. Lukas, F. Aldinger, Thermochim. Acta 314 (1998) 87-110. |
[15] |
Z.Z. Shi, W.Z. Zhang, Scr. Mater. 64(2011) 201-204.
DOI URL |
[16] |
R. Berthold, G. Kreiner, U. Burkhardt, S. Hoffmann, G. Auffermann, Y. Prots, E. Dashjav, A. Amarsanaa, M. Mihalkovic, Intermetallics 32 (2013) 259-273.
DOI URL |
[17] | S.K. Guan, C.X. Zhang, L.G. Wang, L.H. Wu, P.L. Chen, Y.L. Tang, Trans. Nonferrous Met. Soc. China (Engl. Ed.) 18(2008) 593-597. |
[18] | A. Barbucci, P.L. Cabot, G. Bruzzone, G. Cerisola, J. Alloys. Compd. 268(1998) 295-301. |
[19] |
W. Sun, F.J. Lincoln, K. Sugiyama, K. Hiraga, Mater. Sci. Eng. A 294-296(2000) 327-330.
DOI URL |
[20] | Y.P. Ren, G.W. Qin, W.L. Pei, Y. Guo, H.D. Zhao, H.X. Li, M. Jiang, S.M. Hao, J. Alloys. Compd. 481(2009) 176-181. |
[21] |
W. Xiao, S. Jia, J. Wang, J. Yang, L. Wang, Acta Mater. 56(2008) 934-941.
DOI URL |
[22] | C.C. Kammerer, N.S. Kulkarni, B. Warmack, Y.H. Sohn, J. Phase Equilibria Diffus. 37(2016) 65-74. |
[23] |
J. Cermák, I. Stloukal, Int. J. Mater. Res. 97(2006) 1476-1483.
DOI URL |
[24] | Y. Wang, P.B. Prangnell, Mater. Charact. 139(2018) 100-110. |
[25] | J.S. Kirkaldy, Can. J. Phys. 35(1957) 435-440. |
[26] | J.S. Kirkaldy, Can. J. Phys. 36(1958) 899-906. |
[27] | K. Cheng, W. Chen, D. Liu, L. Zhang, Y. Du, Scr. Mater. 76(2014) 5-8. |
[28] |
K. Cheng, J. Zhou, H. Xu, S. Tang, Y. Yang, Comput. Mater. Sci. 143(2018) 182-188.
DOI URL |
[29] | K. Cheng, H. Xu, B. Ma, J. Zhou, S. Tang, Y. Liu, C. Sun, N. Wang, M. Wang, L. Zhang, Y. Du, J. Alloys. Compd. 810(2019), 151878. |
[30] |
J.O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Calphad 26 (2002) 273-312.
DOI URL |
[31] |
G.V. Kidson, J. Nucl. Mater. 3(1961) 21-29.
DOI URL |
[32] | B.C. Zhou, S.L. Shang, Y. Wang, Z.K. Liu, Acta Mater. 103(2016) 573-586. |
[33] | J. Chen, J. Zhao, L. Zhang, X.G. Lu, L. Liu, Calphad Comput. Coupling Phase Diagrams Thermochem. 65(2019) 316-325. |
[34] | A. Paul, T. Laurila, V. Vuorinen, S.V. Divinski, Thermodyn. Diffus. Kirkendall Eff. Solids, Springer International Publishing, Cham, 2014, pp. 299-336. |
[35] | S. Brennan, K. Bermudez, N.S. Kulkarni, Y. Sohn, Metall. Mater. Trans. A 43 (2012) 4043-4052. |
[1] | Peng Peng, Jinmian Yue, Anqiao Zhang, Xudong Zhang, Yuanli Xu. Analysis on fluid permeability of dendritic mushy zone during peritectic solidification in a temperature gradient [J]. J. Mater. Sci. Technol., 2021, 71(0): 169-176. |
[2] | Jinfeng Ling, Dandan Huang, Kewu Bai, Wei Li, Zhentao Yu, Weimin Chen. High-throughput development and applications of the compositional mechanical property map of the β titanium alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 201-210. |
[3] | Xiaoxue Yuan, Ran Liu, Wenchang Zhang, Xiaoqiang Song, Lei Xu, Yan Zhao, Lei Shang, Jingsong Zhang. Preparation of carboxylmethylchitosan and alginate blend membrane for diffusion-controlled release of diclofenac diethylamine [J]. J. Mater. Sci. Technol., 2021, 63(0): 210-215. |
[4] | Guoqing Chen, Qianxing Yin, Jian Cao, Ge Zhang, Gongbo Zhen, Binggang Zhang. Electron beam surface heating-diffusion bonding: An effective joining method for aluminum alloy metal-matrix composite with high SiC volume [J]. J. Mater. Sci. Technol., 2021, 88(0): 109-118. |
[5] | Yongxiao Wang, Xinwu Ma, Guoqun Zhao, Xiao Xu, Xiaoxue Chen, Cunsheng Zhang. Microstructure evolution of spray deposited and as-cast 2195 Al-Li alloys during homogenization [J]. J. Mater. Sci. Technol., 2021, 82(0): 161-178. |
[6] | Liao Yu, Qiaodan Hu, Zongye Ding, Fan Yang, Wenquan Lu, Naifang Zhang, Sheng Cao, Jianguo Li. Effect of cooling rate on the 3D morphology of the proeutectic Al3Ni intermetallic compound formed at the Al/Ni interface after solidification [J]. J. Mater. Sci. Technol., 2021, 69(0): 60-68. |
[7] | Z.W. Yang, J.M. Lin, J.F. Zhang, Q.W. Qiu, Y. Wang, D.P. Wang, J. Song. An effective approach for bonding of TZM and Nb-Zr system: Microstructure evolution, mechanical properties, and bonding mechanism [J]. J. Mater. Sci. Technol., 2021, 84(0): 16-26. |
[8] | Cean Guo, Feng Zhou, Minghui Chen, Jinlong Wang, Shenglong Zhu, Fuhui Wang. An in-situ formed ceramic/alloy/ceramic sandwich barrier to resist elements interdiffusion between NiCrAlY coating and a Ni-based superalloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 1-11. |
[9] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
[10] | Bing Yang, Gang He, Wenhao Wang, Yongchun Zhang, Chong Zhang, Yufeng Xia, Xiaofen Xu. Diffusion-activated high performance ZnSnO/Yb2O3 thin film transistors and application in low-voltage-operated logic circuits [J]. J. Mater. Sci. Technol., 2021, 70(0): 49-58. |
[11] | Tongzhao Gong, Yun Chen, Shanshan Li, Yanfei Cao, Dianzhong Li, Xing-Qiu Chen, Guillaume Reinhart, Henri Nguyen-Thi. Revisiting dynamics and models of microsegregation during polycrystalline solidification of binary alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 155-167. |
[12] | Di Wu, Libin Liu, Lijun Zeng, Wenguang Zhu, Wanlin Wang, Xiaoyong Zhang, Junfeng Hou, Baoliang Liu, Jiafeng Lei, Kechao Zhou. Designing high-strength titanium alloy using pseudo-spinodal mechanism through diffusion multiple experiment and CALPHAD calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 78-88. |
[13] | Bing Yang, Gang He, Qian Gao, Wenhao Wang, Yongchun Zhang, Yufeng Xia, Xiaofen Xu, Leini Wang, Miao Zhang. Illumination interface stability of aging-diffusion-modulated high performance InZnO/DyOx transistors and exploration in digital circuits [J]. J. Mater. Sci. Technol., 2021, 87(0): 143-154. |
[14] | Mengdan Hu, Taotao Wang, Hui Fang, Mingfang Zhu. Modeling of gas porosity and microstructure formation during dendritic and eutectic solidification of ternary Al-Si-Mg alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 76-85. |
[15] | Wendao Li, Longfei Li, Changdong Wei, Ji-Cheng Zhao, Qiang Feng. Effects of Ni, Cr and W on the microstructural stability of multicomponent CoNi-base superalloys studied using CALPHAD and diffusion-multiple approaches [J]. J. Mater. Sci. Technol., 2021, 80(0): 139-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||