J. Mater. Sci. Technol. ›› 2021, Vol. 80: 75-83.DOI: 10.1016/j.jmst.2020.11.047
• Research Article • Previous Articles Next Articles
Chang Fenga,b,c,d, Zhuoyuan Chena,b,c,*(), Jiangping Jinga,b,c,*(
), Mengmeng Suna,c, Jing Tiana,c,d, Guiying Lua,c,d, Li Mab, Xiangbo Lib, Jian Houb
Received:
2020-07-21
Accepted:
2020-11-25
Published:
2020-12-24
Online:
2020-12-24
Contact:
Zhuoyuan Chen,Jiangping Jing
About author:
jpjing@qdio.ac.cn (J. Jing).Chang Feng, Zhuoyuan Chen, Jiangping Jing, Mengmeng Sun, Jing Tian, Guiying Lu, Li Ma, Xiangbo Li, Jian Hou. Significantly enhanced photocatalytic hydrogen production performance of g-C3N4/CNTs/CdZnS with carbon nanotubes as the electron mediators[J]. J. Mater. Sci. Technol., 2021, 80: 75-83.
Fig. 2. SEM images of g-C3N4 (A), g-C3N4/CNTs (B), CdZnS (C), g-C3N4/CdZnS (D) and g-C3N4/CNTs/CdZnS (E); EDS spectrum and elemental mapping of g-C3N4/CNTs/CdZnS (G).
Fig. 6. The photocatalytic hydrogen production performance of the prepared photocatalysts: time-yield curves (A, C) and average hydrogen production rates (B, D).
Fig. 8. The SKP potential distributions on the surface of g-C3N4 (A), g-C3N4/CNTs (B), CdZnS (C), g-C3N4/CdZnS (D) and g-C3N4/CNTs/CdZnS (E); the surface work function the prepared photocatalysts (F).
Fig. 9. The i-t curves at a bias potential of 0 V (vs Ag/AgCl) (A), photoluminescence spectra (B) and excited state electron radioactive decay spectra (C) of g-C3N4, CdZnS and g-C3N4/CNTs/CdZnS. (The illustration in Fig. 9(A) is the enlarged i-t curve of g-C3N4.)
[1] |
F. Wang, Q. Li, D. Xu, Adv. Energy Mater. 7 (2017), 1700529.
DOI URL |
[2] |
M. Ismael, Y. Wu, Sustain. Energy and Fuels 3 (2019) 2907-2925.
DOI URL |
[3] |
Y. Zhang, Y. Li, D. Ni, Z. Chen, X. Wang, Y. Bu, J.P. Ao, Adv. Funct. Mater. 29 (2019), 1902101.
DOI URL |
[4] |
S. Hu, M. Zhu, Chemcatchem 11 (2019) 6147-6165.
DOI URL |
[5] |
C. Feng, Z. Chen, J. Hou, J. Li, X. Li, L. Xu, M. Sun, R. Zeng, Chem. Eng. J. 345 (2018) 404-413.
DOI URL |
[6] |
P. Zhang, X.W. Lou, Adv. Mater. 31 (2019), 1900281.
DOI URL |
[7] |
J. Luo, S. Zhang, M. Sun, L. Yang, S. Luo, J.C. Crittenden, ACS Nano 13 (2019) 9811-9840.
DOI URL |
[8] |
J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Adv. Mater. 29 (2017), 1601694.
DOI URL |
[9] |
S. Meng, J. Zhang, S. Chen, S. Zhang, W. Huang, Appl. Surf. Sci. 476 (2019) 982-992.
DOI URL |
[10] |
Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Nanoscale 5 (2013) 8326-8339.
DOI URL |
[11] |
Y. Qu, X. Duan, Chem. Soc. Rev. 42 (2013) 2568-2580.
DOI URL |
[12] | J. Low, C. Jiang, B. Cheng, S. Wageh, A.A. Al-Ghamdi, J. Yu, Small Methods 1 (2017), 1700080. |
[13] |
H. Li, W. Tu, Y. Zhou, Z. Zou, Adv. Sci. 3 (2016) 1500389.
DOI URL |
[14] |
P. Zhou, J. Yu, M. Jaroniec, Adv. Mater. 26 (2014) 4920-4935.
DOI URL |
[15] |
A. Kumar, P. Raizada, P. Singh, R.V. Saini, A.K. Saini, A. Hosseinibandegharaei, Chem. Eng. J. 391 (2020), 123496.
DOI URL |
[16] |
H. Li, H. Yu, X. Quan, S. Chen, Y. Zhang, ACS Appl. Mater. Interfaces 8 (2016) 2111-2119.
DOI URL |
[17] |
W. Li, C. Feng, S. Dai, J. Yue, F. Hua, H. Hou, Appl. Catal.B 168-169 (2015) 465-471.
DOI URL |
[18] |
Y. Bu, Z. Chen, C. Sun, Appl. Catal. B 179 (2015) 363-371.
DOI URL |
[19] |
Y. Sun, Q. Zhu, B. Bai, Y. Li, C. He, Chem. Eng. J. 390 (2020), 124518.
DOI URL |
[20] |
J. Duan, H. Zhao, Z. Zhang, W. Wang, Ceram. Int. 44 (2018) 22748-22759.
DOI URL |
[21] | R. Wang, G. Qiu, Y. Xiao, X. Tao, W. Peng, B. Li, J.Catal. 374 (2019) 378-390. |
[22] |
D. Ma, J. Wu, M. Gao, Y. Xin, T. Ma, Y. Sun, Chem. Eng. J. 290 (2016) 136-146.
DOI URL |
[23] |
J. Zhang, Y. Guo, Y. Xiong, D. Zhou, S. Dong, J. Catal. 356 (2017) 1-13.
DOI URL |
[24] |
B. Ng, L.K. Putri, L. Tan, P. Pasbakhsh, S. Chai, Chem. Eng. J. 316 (2017) 41-49.
DOI URL |
[25] |
W. Wang, L. Wang, W. Li, C. Feng, R. Qiu, L. Xu, X. Cheng, G. Shao, Mater. Lett. 234 (2019) 183-186.
DOI URL |
[26] |
X. Miao, X. Shen, J. Wu, Z. Ji, J. Wang, L. Kong, M. Liu, C. Song, Appl. Catal. A 539 (2017) 104-113.
DOI URL |
[27] |
J. Li, F. Wei, C. Dong, W. Mu, X. Han, J. Mater. Chem. A 8 (2020) 6524-6531.
DOI URL |
[28] |
A. Iwase, Y.H. Ng, Y. Ishiguro, A. Kudo, R. Amal, J. Am. Chem. Soc. 133 (2011) 11054-11057.
DOI URL |
[29] |
Z. Pan, G. Zhang, X. Wang, Angew. Chem. Int. Ed. 58 (2019) 7102-7106.
DOI URL |
[30] |
X. Wu, J. Zhao, L. Wang, M. Han, M. Zhang, H. Wang, H. Huang, Y. Liu, Z. Kang, Appl. Catal. B 206 (2017) 501-509.
DOI URL |
[31] |
M.F.R. Samsudin, N. Bacho, S. Sufian, Y.H. Ng, J. Mol. Liq. 277 (2019) 977-988.
DOI |
[32] |
W. Chen, R. Yan, J. Zhu, G. Huang, Z. Chen, Appl. Surf. Sci. 504 (2020), 144406.
DOI URL |
[33] |
J. Shi, Y. Zou, D. Ma, Z. Fan, L. Cheng, D. Sun, Z. Wang, C. Niu, L. Wang, Nanoscale 10 (2018) 9292-9303.
DOI URL |
[34] |
Z. Zhu, P. Huo, Z. Lu, Y. Yan, Z. Liu, W. Shi, C. Li, H. Dong, Chem. Eng. J. 331 (2018) 615-625.
DOI URL |
[35] |
G. Di, Z. Zhu, H. Zhang, J. Zhu, Y. Qiu, D. Yin, S. Kuppers, J. Colloid Interface Sci. 538 (2019) 256-266.
DOI URL |
[36] |
N.A. Zubir, C. Yacou, J. Motuzas, X. Zhang, X.S. Zhao, Chem. Commun. 51 (2015) 9291-9293.
DOI URL |
[37] |
M. Usman, J.M. Byrne, A. Chaudhary, S. Orsetti, K. Hanna, C. Ruby, A. Kappler, S.B. Haderlein, Chem. Rev. 118 (2018) 3251-3304.
DOI PMID |
[38] |
I. Shanenkov, A. Sivkov, A. Ivashutenko, T. Medvedeva, I. Shchetinin, J. Alloys Compd. 774 (2019) 637-645.
DOI URL |
[39] |
W. Huang, S. Pan, Y. Li, L. Yu, R. Liu, Int. J. Biol. Macromol. 162 (2020) 845-852.
DOI PMID |
[40] |
J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 391 (2017) 72-123.
DOI URL |
[41] |
J. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater. 8 (2018), 1701503.
DOI URL |
[42] |
S. Cao, J. Yu, J. Phys. Chem. Lett. 5 (2014) 2101-2107.
DOI URL |
[43] |
Y. Liu, H. Zhang, J. Ke, J. Zhang, W. Tian, X. Xu, X. Duan, H. Sun, M.O. Tade, S. Wang, Appl. Catal. B 228 (2018) 64-74.
DOI URL |
[44] |
X. Li, H. Zhang, Y. Liu, X. Duan, X. Xu, S. Liu, H. Sun, S. Wang, Chem. Eng. J. 390 (2020), 124634.
DOI URL |
[45] |
Y. Li, M. Zhou, B. Cheng, Y. Shao, J. Mater. Sci. Technol. 56 (2020) 1-17.
DOI URL |
[46] | T. Yu, Z. Lv, K. Wang, K. Sun, X. Liu, G. Wang, L. Jiang, G. Xie, J. Power Sources 438 (2019), 227014. |
[47] |
H. Huang, Z. Fang, K. Yu, J. Lu, R. Cao, J. Mater. Chem. A 8 (2020) 3882-3891.
DOI URL |
[48] |
X. Sun, H. Du, ACS Sustain. Chem. Eng. 7 (2019) 16320-16328.
DOI URL |
[49] |
L. Yao, D. Wei, Y. Ni, D. Yan, C. Hu, Nano Energy 26 (2016) 248-256.
DOI URL |
[50] |
Q. Liang, C. Zhang, S. Xu, M. Zhou, Z. Li, Int. J. Hydrogen Energy 44 (2019) 29964-29974.
DOI URL |
[51] |
X. Cui, Y.F. Zheng, H.Y. Yin, X.C. Song, Phys. Chem. Chem. Phys. 17 (2015) 29354-29362.
DOI URL |
[52] |
H. Liu, Z. Jin, Z. Xu, Dalton Trans. 44 (2015) 14368-14375.
DOI URL |
[53] |
W. Xue, X. Hu, E. Liu, J. Fan, Appl. Surf. Sci. 447 (2018) 783-794.
DOI URL |
[54] |
X. Ma, Q. Jiang, W. Guo, M. Zheng, W. Xu, F. Ma, B. Hou, RSC Adv. 6 (2016) 28263-28269.
DOI URL |
[55] |
H. Zhao, X. Ding, B. Zhang, Y. Li, C. Wang, Sci. Bull. 62 (2017) 602-609.
DOI URL |
[56] |
Y. Chen, J. Li, Z. Hong, B. Shen, B. Lin, B. Gao, Phys. Chem. Chem. Phys. 16 (2014) 8106-8113.
DOI URL |
[57] | A. Bakhsh, I.H. Gul, A. Maqsood, S. Wu, C. Chan, Y.C. Chang, J. Lumin, 179 (2016) 574-580. |
[58] |
M. Khazaee, W. Xia, G. Lackner, R.G. Mendes, M.H. Rummeli, M. Muhler, D.C. Lupascu, Sci. Rep. 6 (2016) 26208.
DOI PMID |
[59] |
Y. Talukdar, J.T. Rashkow, G. Lalwani, S. Kanakia, B. Sitharaman, Biomaterials 35 (2014) 4863-4877.
DOI PMID |
[60] |
V. Jayaraman, B. Palanivel, C. Ayappan, M. Chellamuthu, A. Mani, Sep. Purif. Technol. 224 (2019) 405-420.
DOI URL |
[61] | Y. Chen, L. Guo, J. Mater. Chem, 22 (2012) 7507-7514. |
[62] |
Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang, D. Zheng, Y. Tong, X. Lu, Adv. Mater. 31 (2019), 1903675.
DOI URL |
[63] |
M.A. Alcudiaramos, M.O. Fuenteztorres, F. Ortizchi, C.G. Espinosagonzalez, N. Hernandezcomo, D.S. Garciazaleta, M.K. Kesarla, J.G. Torrestorres, V. Collinsmartinez, S. Godavarthi, Ceram. Int. 46 (2020) 38-45.
DOI URL |
[64] |
Z. Wei, J. Liu, W. Fang, M. Xu, Z. Qin, Z. Jiang, W. Shangguan, Chem. Eng. J. 358 (2019) 944-954.
DOI URL |
[65] |
L. Yang, X. Liu, L. Li, S. Zhang, H. Zheng, Y. Tang, H. Ju, Biosens. Bioelectron. 142 (2019), 111487.
DOI URL |
[66] |
J. Jing, Z. Chen, C. Feng, Electrochim. Acta 297 (2019) 488-496.
DOI URL |
[67] |
J. Luo, G. Dong, Y. Zhu, Z. Yang, C. Wang, Appl. Catal. B 214 (2017) 46-56.
DOI URL |
[68] |
W. Guo, J. Zhang, G. Li, C. Xu, Appl. Surf. Sci. 470 (2019) 99-106.
DOI URL |
[1] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[2] | Mengting Cao, Fengli Yang, Quan Zhang, Juhua Zhang, Lu Zhang, Lingfeng Li, Xiaohao Wang, Wei-Lin Dai. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2021, 76(0): 189-199. |
[3] | Tingmin Di, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. CdS nanosheets decorated with Ni@graphene core-shell cocatalyst for superior photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 170-178. |
[4] | Yuting Gao, Feng Chen, Zhe Chen, Hongfei Shi. NixCo1-xS as an effective noble metal-free cocatalyst for enhanced photocatalytic activity of g-C3N4 [J]. J. Mater. Sci. Technol., 2020, 56(0): 227-235. |
[5] | Chuang Liu, Fanxin Zeng, Li Xu, Shuangyu Liu, Jincheng Liu, Xinping Ai, Hanxi Yang, Yuliang Cao. Enhanced cycling stability of antimony anode by downsizing particle and combining carbon nanotube for high-performance sodium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 81-88. |
[6] | Xing Zhou, Jian Su, Chenxi Wang, Changqing Fang, Xinyu He, Wanqing Lei, Chaoqun Zhang, Zhigang Huang. Design, preparation and measurement of protein/CNTs hybrids: A concise review [J]. J. Mater. Sci. Technol., 2020, 46(0): 74-87. |
[7] | Feng Zhang, Jia Sun, Yonggang Zheng, Peng-Xiang Hou, Chang Liu, Min Cheng, Xin Li, Hui-Ming Cheng, Zhen Chen. The importance of H2 in the controlled growth of semiconducting single-wall carbon nanotubes [J]. J. Mater. Sci. Technol., 2020, 54(0): 105-111. |
[8] | X.X. Zhang, J.F. Zhang, Z.Y. Liu, W.M. Gan, M. Hofmann, H. Andrä, B.L. Xiao, Z.Y. Ma. Microscopic stresses in carbon nanotube reinforced aluminum matrix composites determined by in-situ neutron diffraction [J]. J. Mater. Sci. Technol., 2020, 54(0): 58-68. |
[9] | Jennifer A. Rudd, Cathren E. Gowenlock, Virginia Gomez, Ewa Kazimierska, Abdullah M. Al-Enizi, Enrico Andreoli, Andrew R. Barron. Solvent-free microwave-assisted synthesis of tenorite nanoparticle-decorated multi-walled carbon nanotubes [J]. J. Mater. Sci. Technol., 2019, 35(6): 1121-1127. |
[10] | Yang Hu, Runjian Jiang, Jingbao Zhang, Chengsong Zhang, Guodong Cui. Synthesis and properties of magnetic multi-walled carbon nanotubes loaded with Fe4N nanoparticles [J]. J. Mater. Sci. Technol., 2018, 34(5): 886-890. |
[11] | Pawel Mierczynski, Sergey V. Dubkov, Sergey V. Bulyarskii, Alexander A. Pavlov, Sergey N. Skorik, Alexey Yu Trifonov, Agnieszka Mierczynska, Eugene P. Kitsyuk, Sergey A. Gavrilov, Tomasz P. Maniecki, Dmitry G. Gromov. Growth of carbon nanotube arrays on various CtxMey alloy films by chemical vapour deposition method [J]. J. Mater. Sci. Technol., 2018, 34(3): 472-480. |
[12] | Zhao Ke, Liu Zhenyu, Xiao Bolyu, Ma Zongyi. Friction stir welding of carbon nanotubes reinforced Al-Cu-Mg alloy composite plates [J]. J. Mater. Sci. Technol., 2017, 33(9): 1004-1008. |
[13] | Yuan Qiuhong, Zeng Xiaoshu, Wang Yanchun, Luo Lan, Ding Yan, Li Dejiang, Liu Yong. Microstructure and mechanical properties of Mg-4.0Zn alloy reinforced by NiO-coated CNTs [J]. J. Mater. Sci. Technol., 2017, 33(5): 452-460. |
[14] | Hu Dan, Zhu Wei, Peng Yuncheng, Shen Shengfei, Deng Yuan. Flexible carbon nanotube-enriched silver electrode films with high electrical conductivity and reliability prepared by facile screen printing [J]. J. Mater. Sci. Technol., 2017, 33(10): 1113-1119. |
[15] | Li Pengbo, Li Tiehu, Yan Hongxia. Mechanical, tribological and heat resistant properties of fluorinated multi-walled carbon nanotube/bismaleimide/cyanate resin nanocomposites [J]. J. Mater. Sci. Technol., 2017, 33(10): 1181-1186. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||