J. Mater. Sci. Technol. ›› 2021, Vol. 82: 47-56.DOI: 10.1016/j.jmst.2020.11.066
• Research Article • Previous Articles Next Articles
Ali Aldalbahia, Edmund Samuelb,*(), Bander S. Alotaibia, Hany El-Hamsharya, Sam S. Yoonb,*(
)
Received:
2020-07-29
Revised:
2020-10-31
Accepted:
2020-11-22
Published:
2021-01-16
Online:
2021-01-16
Contact:
Edmund Samuel,Sam S. Yoon
About author:
skyoon@korea.ac.kr(S.S. Yoon).1These authors have contributed equally to this work.
Ali Aldalbahi, Edmund Samuel, Bander S. Alotaibi, Hany El-Hamshary, Sam S. Yoon. Reduced graphene oxide supersonically sprayed on wearable fabric and decorated with iron oxide for supercapacitor applications[J]. J. Mater. Sci. Technol., 2021, 82: 47-56.
Scheme 1. (a) Bare uncoated fabric as a substrate. (b) Supersonic spraying to deposit rGO flakes onto the fabric. (c) rGO-coated fabric. (d) Fe2O3 decoration on the rGO-coated fabric inside the autoclave. (e) LED light test using the fabricated supercapacitor (top) and comparison between the rGO-free fabric and rGO-coated fabric with Fe2O3 decoration. (f) Possible smart clothing with wearable supercapacitors.
Fig. 1. (a) XRD patterns (the triangles, solid circles, and diamonds represent carbon and α- and γ-Fe2O3, respectively) and (b) Raman spectra of the pure rGO, F1, F2, and F3 samples.
Fig. 3. (a) Focused ion beam, (b) TEM, and (c) HRTEM images of the F2 sample. (d) High-angle annular dark-field (HAADF) image for elemental mapping of Fe, O, and C (the inset in (d) is the combined elemental mapping).
Fig. 5. CV curves of the pure rGO fabric sample (a) at different scan rates, (b) anodic/cathodic peak current in the potential window of ΔV = 1.1 V, and (c) for different CPRs (ΔV = 0.8, 0.9, 1.0, and 1.2 V) at a scan rate of 100 mV s-1. CV curves of the pure Fe2O3 sample (d) at different scan rates, (e) anodic/cathodic peak current in the potential window of ΔV = 1.1 V, and (f) for different CPRs at a scan rate of 100 mV s-1.
Fig. 6. CV curves of (a) F2 at various scan rates, (b) F1, F2, and F3 at a scan rate of 100 mV s-1, and (c) anodic/cathodic peak current in the potential window of ΔV = 1.1 V. CV curves of F2 (d) at different potential windows and (e) for a different number of folds. (f) Nyquist plots for the F1, F2, and F3 samples at open-circuit voltage.
Fig. 7. Galvanostatic charge-discharge curves: (a) comparison of all samples at 1 A g-1, (b) F2 at various current densities, (c) specific capacitance vs. current density, (d) capacitance comparison of F2 for various potential ranges, (e) CPR dependent Ragone plots, and (f) capacitance retention for electrode without fold and with two folds. (g) Resistance change of the F2 sample during N = 400 cycles of stretching and relaxing.
Electrode material | Electrolyte | Potential range (V) | Specific capacitance (F g-1) | Ref. |
---|---|---|---|---|
Fe2O3 ND@NG | 2 M KOH | -1 to 0 | 274@1 A g-1 | [ |
α-Fe2O3/rGO | PVA/KOH | -0.93 to 0 | 455@1 A g-1 | [ |
Fe2O3-Fe3O4/N-rGO | 3 M KOH | 0 to 1.7 | 112@1 A g-1 | [ |
Fe2O3-Fe3O4/C | 6 M KOH | -0.8 to -0.3 | 274@0.5 A g-1 | [ |
Fe2O3/rGO | 1 M Na2SO4 | -1 to 0.2 | 255@0.5 A g-1 | [ |
rGO /Fe2O3 | 0.5 M H2SO4 | -0.2 to 1 | 86@0.1 A g-1 | [ |
Au- Fe2O3 nanorods | 0.5 M H2SO4 | 0 to 1.8 | 570@1 A g-1 | [ |
α-Fe2O3@C | 1 M LiOH | -0.75 to -0.2 | 443@0.5 A g-1 | [ |
Fe2O3/MnO2 | 1 M Na2SO4 | 0 to 1.2 | 297@1 A·g-1 | [ |
N-GNTs@α-Fe2O3 | 2 M KOH | -1 to 0 | 309@1 A g-1 | [ |
Fe2O3/rGO fabric | 2 M KOH | 0 to 1.1 | 360@1 A g-1 | Present |
Table 1 Specific capacitances of iron oxide composites reported in the study.
Electrode material | Electrolyte | Potential range (V) | Specific capacitance (F g-1) | Ref. |
---|---|---|---|---|
Fe2O3 ND@NG | 2 M KOH | -1 to 0 | 274@1 A g-1 | [ |
α-Fe2O3/rGO | PVA/KOH | -0.93 to 0 | 455@1 A g-1 | [ |
Fe2O3-Fe3O4/N-rGO | 3 M KOH | 0 to 1.7 | 112@1 A g-1 | [ |
Fe2O3-Fe3O4/C | 6 M KOH | -0.8 to -0.3 | 274@0.5 A g-1 | [ |
Fe2O3/rGO | 1 M Na2SO4 | -1 to 0.2 | 255@0.5 A g-1 | [ |
rGO /Fe2O3 | 0.5 M H2SO4 | -0.2 to 1 | 86@0.1 A g-1 | [ |
Au- Fe2O3 nanorods | 0.5 M H2SO4 | 0 to 1.8 | 570@1 A g-1 | [ |
α-Fe2O3@C | 1 M LiOH | -0.75 to -0.2 | 443@0.5 A g-1 | [ |
Fe2O3/MnO2 | 1 M Na2SO4 | 0 to 1.2 | 297@1 A·g-1 | [ |
N-GNTs@α-Fe2O3 | 2 M KOH | -1 to 0 | 309@1 A g-1 | [ |
Fe2O3/rGO fabric | 2 M KOH | 0 to 1.1 | 360@1 A g-1 | Present |
[1] |
X. Yu, X. Su, K. Yan, H. Hu, M. Peng, X. Cai, D. Zou, Adv. Mater. Technol. 1 (2016), 1600009.
DOI URL |
[2] |
S. Zhu, J. Ni, Y. Li, Nano Res. 13 (2020) 1825-1841.
DOI URL |
[3] |
C. Choi, H.J. Sim, G.M. Spinks, X. Lepró, R.H. Baughman, S.J. Kim, Adv. Energy Mater. 6 (2016), 1502119.
DOI URL |
[4] |
Z. Wang, M. Zhu, Z. Pei, Q. Xue, H. Li, Y. Huang, C. Zhi, Mater. Sci. Eng. R 139 (2020), 100520.
DOI URL |
[5] |
T.T. Huang, W. Wu, J. Mater. Chem. A 7 (2019) 23280-23300.
DOI URL |
[6] |
P. Sun, M. Qiu, M. Li, W. Mai, G. Cui, Y. Tong, Nano Energy 55 (2019) 506-515.
DOI URL |
[7] | Z. Zhou, Q. Li, L. Yuan, L. Tang, X. Wang, B. He, P. Man, C. Li, L. Xie, W. Lu, L. Wei, Q. Zhang, Y. Yao, Energy Storage Mater. 25 (2020) 893-902. |
[8] |
L. Xu, Y. Li, C. Cheng, J. Gao, X. Jin, J.C. Gallop, L. Hao, J. Electroanal. Chem. 847 (2019), 113199.
DOI URL |
[9] |
B. Joshi, S. Park, E. Samuel, H.S. Jo, S. An, M.W. Kim, M.T. Swihart, J.M. Yun, K.H. Kim, S.S. Yoon, J. Electroanal. Chem. 810 (2018) 239-247.
DOI URL |
[10] |
E. Samuel, H.S. Jo, B. Joshi, H.G. Park, Y.I. Kim, S. An, M.T. Swihart, J.M. Yun, K.H. Kim, S.S. Yoon, Appl. Surf. Sci. 423 (2017) 210-218.
DOI URL |
[11] |
K. Sharma, K. Pareek, R. Rohan, P. Kumar, Int. J. Energy Res. 43 (2019) 604-611.
DOI URL |
[12] |
Z. Jin, M. Zhou, J. Hu, K. Li, L. Tang, H. Zhao, Z. Cai, Y. Zhao, J. Alloys. Compd. 784 (2019) 1091-1098.
DOI URL |
[13] |
S. Lei, Y. Liu, L. Fei, R. Song, W. Lu, L. Shu, C.L. Mak, Y. Wang, H. Huang, J. Mater. Chem. A 4 (2016) 14781-14788.
DOI URL |
[14] |
Y. Huang, H. Hu, Y. Huang, M. Zhu, W. Meng, C. Liu, Z. Pei, C. Hao, Z. Wang, C. Zhi, ACS Nano 9 (2015) 4766-4775.
DOI PMID |
[15] |
Z. Li, Y. Ma, L. Wang, X. Du, S. Zhu, X. Zhang, L. Qu, M. Tian, ACS Appl. Mater. Interfaces 11 (2019) 46278-46285.
DOI URL |
[16] |
C. Zhao, K. Shu, C. Wang, S. Gambhir, G.G. Wallace, Electrochim. Acta 172 (2015) 12-19.
DOI URL |
[17] |
B. Joshi, E. Samuel, T.G. Kim, C.W. Park, Y.I. Kim, M.T. Swihart, W.Y. Yoon, S.S. Yoon, J. Alloys. Compd. 768 (2018) 525-534.
DOI URL |
[18] |
T.G. Kim, E. Samuel, B. Joshi, C.W. Park, M.W. Kim, M.T. Swihart, W.Y. Yoon, S.S. Yoon, J. Alloys Compd. 766 (2018) 331-340.
DOI URL |
[19] |
E. Samuel, C. Park, T. Kim, B. Joshi, A. Aldalbahi, H.S. Alanzi, M.T. Swihart, W.Y. Yoon, S.S. Yoon, J. Alloys. Compd. 834 (2020), 155208.
DOI URL |
[20] | H. Mattila, in: R. Sinclair (Ed.), Textiles and Fashion, Woodhead Publishing, 2015, pp. 355-376. |
[21] |
B. Joshi, J.G. Lee, E. Samuel, H.S. Jo, T.G. Kim, M.T. Swihart, W.Y. Yoon, S.S. Yoon, J. Alloys. Compd. 726 (2017) 114-120.
DOI URL |
[22] |
E. Samuel, T.G. Kim, C.W. Park, B. Joshi, M.T. Swihart, S.S. Yoon, ACS Sustain. Chem. Eng. 7 (2019) 14031-14040.
DOI URL |
[23] |
W. Yang, J. Yang, J.J. Byun, F.P. Moissinac, J. Xu, S.J. Haigh, M. Domingos, M.A. Bissett, R.A.W. Dryfe, S. Barg, Adv. Mater 31 (2019), 1902725.
DOI URL |
[24] |
P. Zhao, N. Wang, W. Hu, S. Komarneni, Ceram. Int. 45 (2019) 10420-10428.
DOI URL |
[25] |
F. Han, J. Xu, J. Zhou, J. Tang, W. Tang, Nanoscale 11 (2019) 12477-12483.
DOI URL |
[26] |
L. Liu, J. Lang, P. Zhang, B. Hu, X. Yan, ACS Appl. Mater. Interfaces 8 (2016) 9335-9344.
DOI URL |
[27] |
Y. Dong, L. Xing, F. Hu, A. Umar, X. Wu, Mater. Res. Bull. 107 (2018) 391-396.
DOI URL |
[28] |
S. Mallick, P.P. Jana, C.R. Raj, ChemElectroChem 5 (2018) 2348-2356.
DOI URL |
[29] |
T. Arun, K. Prabakaran, R. Udayabhaskar, R.V. Mangalaraja, A. Akbari-Fakhrabadi, Appl. Surf. Sci. 485 (2019) 147-157.
DOI URL |
[30] |
Z. Zou, W. Xiao, Y. Zhang, H. Yu, W. Zhou, Appl. Surf. Sci. 500 (2020), 144244.
DOI URL |
[31] |
Y. Jiao, Y. Liu, B. Yin, S. Zhang, F. Qu, X. Wu, Nano Energy 10 (2014) 90-98.
DOI URL |
[32] |
M. Kang, S. Zhou, J. Zhang, F. Ning, C. Ma, Z. Qiu, Electrochim. Acta 338 (2020), 135820.
DOI URL |
[33] |
Y. Zhu, S. Cheng, W. Zhou, J. Jia, L. Yang, M. Yao, M. Wang, J. Zhou, P. Wu, M. Liu, ACS Sustain. Chem. Eng. 5 (2017) 5067-5074.
DOI URL |
[34] |
R. Bhujel, S. Rai, U. Deka, B.P. Swain, J. Alloys. Compd. 792 (2019) 250-259.
DOI URL |
[35] |
S. Rudra, A.K. Nayak, S. Koley, R. Chakraborty, P.K. Maji, M. Pradhan, ACS Sustain. Chem. Eng. 7 (2019) 724-733.
DOI URL |
[36] |
B. Gnana Sundara Raj, T.H. Ko, J. Acharya, M.K. Seo, M.S. Khil, H.Y. Kim, B.S. Kim, Electrochim. Acta 334 (2020), 135627.
DOI URL |
[37] |
Y. Xu, Y. Jiao, L. Shen, J. Chen, H. Lin, J. Alloys. Compd. 780 (2019) 212-219.
DOI URL |
[38] |
L. Chen, J. Huang, R. Zeng, Y. Xiong, J. Wei, K. Yuan, Y. Chen, Adv. Mater. Interfaces 7 (2020), 1901729.
DOI URL |
[39] |
L. Sun, C. Tian, Y. Fu, Y. Yang, J. Yin, L. Wang, H. Fu, Chem. Eur. J. 20 (2014) 564-574.
DOI URL |
[40] |
P. Yang, W. Mai, Nano Energy 8 (2014) 274-290.
DOI URL |
[41] |
E.S. Khatibi, M. Haghighi, S. Mahboob, Appl. Surf. Sci. 465 (2019) 937-949.
DOI |
[42] |
K. Zhao, M. Wen, Y. Dong, L. Zhang, M. Yan, W. Xu, C. Niu, L. Zhou, Q. Wei, W. Ren, X. Wang, L. Mai, Adv. Energy Mater. 7 (2017), 1601582.
DOI URL |
[43] |
B. Joshi, E. Samuel, M.W. Kim, K. Kim, T.G. Kim, M.T. Swihart, W.Y. Yoon, S.S. Yoon, J. Alloys. Compd. 782 (2019) 699-708.
DOI URL |
[44] |
A. Lassoued, B. Dkhil, A. Gadri, S. Ammar, Results Phys. 7 (2017) 3007-3015.
DOI URL |
[45] | B.P. Singh, A. Kumar, H.I. Areizaga-Martinez, C.A. Vega-Olivencia, M.S. Tomar, Indian J. Pure Appl. Phys. 55 (2017) 722-728. |
[46] |
X. Yang, H. Sun, L. Zhang, L. Zhao, J. Lian, Q. Jiang, Sci. Rep. 6 (2016) 31591.
DOI URL |
[47] |
Q. Xu, Z. Zhang, X. Song, S. Yuan, Z. Qiu, H. Xu, B. Cao, Sens. Actuators B Chem. 245 (2017) 375-385.
DOI URL |
[48] |
C. Han, J. Shi, S. Yang, Y. Wang, K. Xie, X. Song, H. Liu, A. Cai, S. Yun, Appl. Surf. Sci. 507 (2020), 145179.
DOI URL |
[49] |
B.N. Joshi, S. An, Y.I. Kim, E.P. Samuel, K.Y. Song, I.W. Seong, S.S. Al-Deyab, M.T. Swihart, W.Y. Yoon, S.S. Yoon, J. Alloys. Compd. 700 (2017) 259-266.
DOI URL |
[50] |
J. Liu, D. Zhu, T. Ling, A. Vasileff, S.Z. Qiao, Nano Energy 40 (2017) 264-273.
DOI URL |
[51] |
A. Morais, J.P.C. Alves, F.A.S. Lima, M. Lira-Cantu, A.F. Nogueira, J. Photonics Energy 5 (2015), 057408.
DOI URL |
[52] |
R. Kumar, S.M. Youssry, K.Z. Ya, W.K. Tan, G. Kawamura, A. Matsuda, Diamond Relat. Mater 101 (2020), 107622.
DOI URL |
[53] |
A. Meng, T. Shen, G. Song, T. Huang, Y. Lin, H. Xue, X. Yuan, J. Zhao, Z. Li, Mater. Charact. 165 (2020), 110375.
DOI URL |
[54] |
N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, J. Chem. Educ. 95 (2018) 197-206.
DOI URL |
[55] |
J.G. Lee, B.N. Joshi, J.H. Lee, T.G. Kim, D.Y. Kim, S.S. Al-Deyab, I.W. Seong, M.T. Swihart, W.Y. Yoon, S.S. Yoon, Electrochim. Acta 228 (2017) 604-610.
DOI URL |
[56] |
S.K. Ujjain, G. Singh, R.K. Sharma, Electrochim. Acta 169 (2015) 276-282.
DOI URL |
[57] |
S.K. Ujjain, P. Ahuja, R.K. Sharma, J. Mater. Chem. A 3 (2015) 9925-9931.
DOI URL |
[58] |
S.K. Ujjain, P. Ahuja, R. Bhatia, P. Attri, Mater. Res. Bull. 83 (2016) 167-171.
DOI URL |
[59] |
P. Ahuja, S.K. Ujjain, R. Kanojia, Appl. Surf. Sci. 427 (2018) 102-111.
DOI URL |
[60] |
P. Ahuja, S. Kumar Ujjain, R. Kanojia, Appl. Surf. Sci. 404 (2017) 197-205.
DOI URL |
[61] |
S.K. Ujjain, R. Bhatia, P. Ahuja, P. Attri, PLoS One 10 (2015), e0131475.
DOI URL |
[62] |
Y. Jiang, J. Liu, Energy Environ. Mater. 2 (2019) 30-37.
DOI URL |
[63] |
A. Balducci, W.A. Henderson, M. Mastragostino, S. Passerini, P. Simon, F. Soavi, Electrochim. Acta 50 (2005) 2233-2237.
DOI URL |
[64] |
J. Pan, M. Yang, L. Luo, A. Xu, B. Tang, D. Cheng, G. Cai, X. Wang, ACS Appl. Mater. Interfaces 11 (2019) 7338-7348.
DOI URL |
[65] | S. Wang, H. Ning, N. Hu, Y. Liu, F. Liu, R. Zou, K. Huang, X. Wu, S. Weng, Alamusi,Adv. Mater. Interfaces 7 (2020), 2070006. |
[1] | Wenshen Wang, Fenfen Li, Shibo Li, Yi Hu, Mengran Xu, Yuanyuan Zhang, Muhammad Imran Khan, Shaozhen Wang, Min Wu, Weiping Ding, Bensheng Qiu. M2 macrophage-targeted iron oxide nanoparticles for magnetic resonance image-guided magnetic hyperthermia therapy [J]. J. Mater. Sci. Technol., 2021, 81(0): 77-87. |
[2] | Bing Zhang, Jiankang He, Gaofeng Zheng, Yuanyuan Huang, Chaohung Wang, Peisheng He, Fanping Sui, Lingchao Meng, Liwei Lin. Electrohydrodynamic 3D printing of orderly carbon/nickel composite network as supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2021, 82(0): 135-143. |
[3] | Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. NiCoLDH nanosheets grown on MOF-derived Co3O4 triangle nanosheet arrays for high-performance supercapacitor [J]. J. Mater. Sci. Technol., 2021, 62(0): 60-69. |
[4] | Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. Metal-organic framework derived hierarchical NiCo2O4 triangle nanosheet arrays@SiC nanowires network/carbon cloth for flexible hybrid supercapacitors [J]. J. Mater. Sci. Technol., 2021, 81(0): 162-174. |
[5] | Xin Wang, Jiaqian Zhu, Xiang Yu, Xionghui Fu, Yi Zhu, Yuanming Zhang. Enhanced removal of organic pollutant by separable and recyclable rGH-PANI/BiOI photocatalyst via the synergism of adsorption and photocatalytic degradation under visible light [J]. J. Mater. Sci. Technol., 2021, 77(0): 19-27. |
[6] | Liqianyun Xu, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Ahmed A. Al-Ghamdi, S. Wageh. Significant capacitance enhancement induced by cyclic voltammetry in pine needle-like Ni-Co-Cu multicomponent electrode [J]. J. Mater. Sci. Technol., 2021, 78(0): 100-109. |
[7] | Weiwei Xiao, Na Ni, Xiaohui Fan, Xiaofeng Zhao, Yingzheng Liu, Ping Xiao. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide [J]. J. Mater. Sci. Technol., 2021, 60(0): 70-76. |
[8] | Xu Bao, Wei-Bin Zhang, Qiang Zhang, Lun Zhang, Xue-Jing Ma, Jianping Long. Interlayer material technology of manganese phosphate toward and beyond electrochemical pseudocapacitance over energy storage application [J]. J. Mater. Sci. Technol., 2021, 71(0): 109-128. |
[9] | Jin Kyu Kim, Chang Soo Lee, Jae Hun Lee, Jung Tae Park, Jong Hak Kim. Ni, Co-double hydroxide wire structures with controllable voids for electrodes of energy-storage devices [J]. J. Mater. Sci. Technol., 2020, 55(0): 126-135. |
[10] | Yin Liu, Cuili Xiang, Hailiang Chu, Shujun Qiu, Jennifer McLeod, Zhe She, Fen Xu, Lixian Sun, Yongjin Zou. Binary Co-Ni oxide nanoparticle-loaded hierarchical graphitic porous carbon for high-performance supercapacitors [J]. J. Mater. Sci. Technol., 2020, 37(0): 135-142. |
[11] | Lucas-Granados Bianca, Sánchez-Tovar Rita, M. Fernández-Domene Ramón, María Estívalis-Martínez José, García-Antón José. How does anodization time affect morphological and photocatalytic properties of iron oxide nanostructures? [J]. J. Mater. Sci. Technol., 2020, 38(0): 159-169. |
[12] | O. Kapitanova Olesya, V. Emelin Evgeny, G. Dorofeev Sergey, V. Evdokimov Pavel, N. Panin Gennady, Lee Youngmin, Lee Sejoon. Direct patterning of reduced graphene oxide/graphene oxide memristive heterostructures by electron-beam irradiation [J]. J. Mater. Sci. Technol., 2020, 38(0): 237-243. |
[13] | Xueying Yang, Cuili Xiang, Yongjin Zou, Jing Liang, Huanzhi Zhang, Erhu Yan, Fen Xu, Xuebu Hu, Qiong Cheng, Lixian Sun. Low-temperature synthesis of sea urchin-like Co-Ni oxide on graphene oxide for supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2020, 55(0): 223-230. |
[14] | Yiwen Hong, Jingli Xu, Jin Suk Chung, Won Mook Choi. Graphene quantum dots/Ni(OH)2 nanocomposites on carbon cloth as a binder-free electrode for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 73-79. |
[15] | Jing Liang, Cuili Xiang, Yongjin Zou, Xuebu Hu, Hailiang Chu, Shujun Qiu, Fen Xu, Lixian Sun. Spacing graphene and Ni-Co layered double hydroxides with polypyrrole for high-performance supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 190-197. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||