J. Mater. Sci. Technol. ›› 2021, Vol. 78: 100-109.DOI: 10.1016/j.jmst.2020.10.051
• Review Article • Previous Articles Next Articles
Liqianyun Xua, Liuyang Zhanga,*(), Bei Chenga, Jiaguo Yua,b,**(
), Ahmed A. Al-Ghamdic, S. Wagehc,*(
)
Received:
2020-08-06
Revised:
2020-10-07
Accepted:
2020-10-13
Published:
2021-07-10
Online:
2020-11-21
Contact:
Liuyang Zhang,Jiaguo Yu,S. Wageh
About author:
*E-mail addresses: wswelm@kau.edu.sa (S. Wageh).Liqianyun Xu, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Ahmed A. Al-Ghamdi, S. Wageh. Significant capacitance enhancement induced by cyclic voltammetry in pine needle-like Ni-Co-Cu multicomponent electrode[J]. J. Mater. Sci. Technol., 2021, 78: 100-109.
Fig. 2. (a, c, e) Electrochemical performance of NiCoCu from 1st to 1000th cycles: (a) CV curves; (c) GCD curves; (e) Nyquist plots. (b, d, f) Performance comparison of NiCoCu, NiCoCu-T, CoCu, CoCu-T, NiCu and NiCu-T: (b) Areal capacitance based on CV; (d) GCD curves; (f) Nyquist plots.
Fig. 3. (a-d) FESEM images of materials: (a) CuH nanorods; (b) NiCoCu; (c, d) NiCoCu-T at different magnification. Water contact angle images of NiCoCu (e) and NiCoCu-T (f).
Fig. 5. (a, b) High-resolution XPS and the Auger electron spectrum of Cu; (d, f) High-resolution XPS comparison of NiCoCu-T and NiCoCu: (b) Cu, (c) Ni, (d) Co, (e) O and (f) C.
Fig. 7. (a) CV curves from 5 to 30 mV s-1; (b) GCD curves from 2 to 16 mA cm-2; (c) The ratio of capacitive contribution; (d) Cycling behavior of NiCoCu-T at 25 mA cm2.
Fig. 8. Electrochemical performances of NiCoCu-T//AC ASC: (a) CV curves of AC and NiCoCu-T; (b) CV curves of ASC at 50 mV s-1 in different potential windows; (c) CV curves from 10 to 50 mV s-1; (d) GCD curves from 2 to 15 mA cm-2; (e) Ragone plot in comparison with reported values; (f) Cycling behavior and Coulombic efficiency at 25 mA cm-2.
[1] | T. Liu, L. Zhang, B. Cheng, J. Yu, Adv. Energy Mater. 9(2019) 1803900. |
[2] |
H. Chen, Y. Ai, F. Liu, X. Chang, Y. Xue, Q. Huang, C. Wang, H. Lin, S. Han, Electrochim. Acta 213(2016) 55-65.
DOI URL |
[3] |
L. Zhang, T. Huang, H. Gong, Phys. Chem. Chem. Phys. 19(2017) 10462-10469.
DOI URL |
[4] |
T. Liu, L. Li, L. Zhang, B. Cheng, W. You, J. Yu, J. Power Sources 426(2019) 266-274.
DOI URL |
[5] | Z. Zhu, R. Kan, S. Hu, L. He, X. Hong, H. Tang, W. Luo, Small 16(2020) 2003251. |
[6] |
Y. Chen, T. Liu, L. Zhang, J. Yu, Appl. Surf. Sci. 484(2019) 135-143.
DOI URL |
[7] |
L. Zhang, D. Shi, T. Liu, M. Jaroniec, J. Yu, Mater. Today 25(2019) 35-65.
DOI URL |
[8] |
X. Li, K. Zhou, J. Zhou, J. Shen, M. Ye, J. Mater. Sci. Technol. 34(2018) 2342-2349.
DOI URL |
[9] |
T. Liu, C. Jiang, B. Cheng, W. You, J. Yu, J. Power Sources 359(2017) 371-378.
DOI URL |
[10] |
K. Li, S. Li, F. Huang, X. Yu, Y. Lu, L. Wang, H. Chen, H. Zhang, Nanoscale 10(2018) 2524-2532.
DOI URL |
[11] |
Q. Tan, P. Wang, H. Liu, Y. Xu, Y. Chen, J. Yang, Sci. China Mater. 59(2016) 323-336.
DOI URL |
[12] |
Y. Meng, P. Sun, W. He, B. Teng, X. Xu, Appl. Surf. Sci. 470(2019) 792-799.
DOI |
[13] | P. Geng, S. Zheng, H. Tang, R. Zhu, L. Zhang, S. Cao, H. Xue, H. Pang, Adv. Energy Mater. 8(2018) 1703259. |
[14] |
Y. Chen, T. Liu, L. Zhang, J. Yu, ACS Sustain. Chem. Eng. 7(2019) 11157-11165.
DOI URL |
[15] | P. Cai, T. Liu, L. Zhang, B. Cheng, J. Yu, Appl. Surf. Sci. 504(2020) 144501. |
[16] |
K. Qi, R. Hou, S. Zaman, Y. Qiu, B. Xia, H. Duan, ACS Appl. Mater. Interfaces 10(2018) 18021-18028.
DOI URL |
[17] |
T. Wang, S. Zhang, H. Wang, Sci. China Mater. 61(2017) 296-302.
DOI URL |
[18] |
H. Jia, Z. Wang, X. Zheng, J. Lin, H. Liang, Y. Cai, J. Qi, J. Cao, J. Feng, W. Fei, Chem. Eng. J. 351(2018) 348-355.
DOI URL |
[19] |
D. Shi, L. Zhang, N. Zhang, Y. Zhang, Z. Yu, H. Gong, Nanoscale 10(2018) 10554-10563.
DOI URL |
[20] | H.Y. Fu, Y.J. Chen, C. Ren, H.Y. Jiang, G.H. Tian, Adv. Mater. Interfaces 6(2019) 1802052. |
[21] |
T. Liu, C. Jiang, B. Cheng, W. You, J. Yu, J. Mater. Chem. A 5(2017) 21257-21265.
DOI URL |
[22] |
X. Wu, Z. Han, X. Zheng, S. Yao, X. Yang, T. Zhai, Nano Energy 31(2017) 410-417.
DOI URL |
[23] | T. Liu, L. Zhang, W. You, J. Yu, Small 14(2018) 1702407. |
[24] |
J. Ma, S. Tang, J.A. Syed, D. Su, X. Meng, J. Mater. Sci. Technol. 34(2018) 1103-1109.
DOI URL |
[25] |
R. Li, S. Wang, Z. Huang, F. Lu, T. He, J. Power Sources 312(2016) 156-164.
DOI URL |
[26] | D. Yu, Z. Zhang, Y. Teng, Y. Meng, Y. Wu, X. Liu, Y. Hua, X. Zhao, X. Liu, J. Power Sources 440(2019) 227164. |
[27] |
X. Zhou, X. Li, D. Chen, D. Zhao, X. Huang, J. Mater. Chem. A 6(2018) 24603-24613.
DOI URL |
[28] |
J. Zhang, Y. Li, Y. Zhang, X. Qian, R. Niu, R. Hu, X. Zhu, X. Wang, J. Zhu, Nano Energy 43(2018) 91-102.
DOI URL |
[29] |
J. Rodríguez-Moreno, E. Navarrete-Astorga, E.A. Dalchiele, R. Schrebler, J.R. Ramos-Barrado, F. Martín, Chem. Commun. 50(2014) 5652-5655.
DOI URL |
[30] |
L. Zhang, C. Tang, X. Yin, H. Gong, J. Mater. Chem. A 2(2014) 4660-4666.
DOI URL |
[31] |
Y. Ma, Y. Gu, Y. Yao, H. Jin, X. Zhao, X. Yuan, Y. Lian, P. Qi, R. Shah, Y. Peng, Z. Deng, J. Mater. Chem. A 7(2019) 20926-20935.
DOI URL |
[32] |
S. Wang, J. Hu, L. Jiang, X. Li, J. Cao, Q. Wang, A. Wang, X. Li, L. Qu, Y. Lu, Electrochim. Acta 293(2019) 273-282.
DOI URL |
[33] |
S. Zhu, Z. Wang, F. Huang, H. Zhang, S. Li, J. Mater. Chem. A 5(2017) 9960-9969.
DOI URL |
[34] | Y. Liu, X. Cao, L. Cui, Y. Zhong, R. Zheng, D. Wei, C. Barrow, J. Razal, W. Yang, J. Liu, J. Power Sources 437(2019) 226897. |
[35] |
L. Zhang, H. Gong, ACS Appl. Mater. Interfaces 7(2015) 15277-15284.
DOI URL |
[36] |
D. Zhu, M. Yan, R. Chen, Q. Liu, J. Liu, J. Yu, H. Zhang, M. Zhang, P. Liu, J. Li, J. Wang, Chem. Eng. J. 371(2019) 348-355.
DOI |
[37] | L. He, H. Liu, W. Luo, W. Zhang, X. Liao, Y. Guo, T. Hong, H. Yuan, L. Mai, Appl. Phys. Lett. 114(2019) 223903. |
[38] |
T. Liu, J. Liu, L. Zhang, B. Cheng, J. Yu, J. Mater. Sci. Technol. 47(2020) 113-121.
DOI URL |
[39] |
L. Xu, L. Zhang, B. Cheng, J. Yu, Carbon 152(2019) 652-660.
DOI URL |
[40] |
T. Liu, L. Zhang, B. Cheng, W. You, J. Yu, Chem. Commun. 54(2018) 3731-3734.
DOI URL |
[41] |
X. Cao, L. Cui, B. Liu, Y. Liu, D. Jia, W. Yang, J.M. Razal, J. Liu, J. Mater. Chem. A 7(2019) 3815-3827.
DOI URL |
[42] | P. Chang, H. Mei, Y. Zhao, W. Huang, S. Zhou, L. Cheng, Adv. Funct. Mater. 29(2019) 1903588. |
[43] | Y. Liu, C. Xiang, H. Chu, S. Qiu, J. McLeod, Z. She, F. Xu, L. Sun, Y. Zou, J. Mater. Sci. Technol. 37(2020) 135-142. |
[44] |
Y. Liu, X. Teng, Y. Mi, Z. Chen, J. Mater. Chem. A 5(2017) 24407-24415.
DOI URL |
[45] |
Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, J. Han, M. Wei, D. Evans, X. Duan, Nano Energy 20(2016) 294-304.
DOI URL |
[46] |
Y. Liu, X. Cao, D. Jiang, D. Jia, J. Liu, J. Mater. Chem. A 6(2018) 10474-10483.
DOI URL |
[47] | Y. Guo, X. Hong, Y. Wang, Q. Li, J. Meng, R. Dai, X. Liu, L. He, L. Mai, Adv. Funct. Mater. 29(2019) 1809004. |
[48] |
H. Liu, Z. Guo, X. Xun, J. Lian, J. Mater. Sci. Mater. El. 30(2019) 11952-11963.
DOI URL |
[49] |
J. Kang, J. Sheng, J. Xie, H. Ye, J. Chen, X. Fu, G. Du, R. Sun, C. Wong, J. Mater. Chem. A 6(2018) 10064-10073.
DOI URL |
[50] |
J. Chen, J. Xu, S. Zhou, N. Zhao, C. Wong, J. Mater. Chem. A 3(2015) 17385-17391.
DOI URL |
[51] | W. Zhang, X. Du, Y. Tan, J. Hu, Z. Li, B. Tang, J. Mater. Sci. Technol. 33(2017) 438-443. |
[52] |
J. Hao, S. Peng, H. Li, S. Dang, T. Qin, Y. Wen, J. Huang, F. Ma, D. Gao, F. Li, G. Cao, J. Mater. Chem. A 6(2018) 16094-16100.
DOI URL |
[53] |
G. Zhang, Y. Chen, Y. Jiang, C. Lin, Y. Chen, H. Guo, J. Mater. Sci. Technol. 34(2018) 1538-1543.
DOI URL |
[54] | D. Dubal, N.R. Chodankar, S. Qiao, Small 15(2019) 1804104. |
[55] | P. Zhang, H. He, Appl. Surf. Sci. 497(2019) 143725. |
[56] |
H.S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert, V. Ozolins, B. Dunn, Nat. Mater. 16(2017) 454-460.
DOI URL |
[57] | Y. Liu, C. Li, J. Xu, M. Ou, C. Fang, S. Sun, Y. Qiu, J. Peng, G. Lu, Q. Li, J. Han, Y. Huang, Nano Energy (2019) 104211. |
[58] | T. Wu, M. Jing, L. Yang, G. Zou, H. Hou, Y. Zhang, Y. Zhang, X. Cao, X. Ji, Adv. Energy Mater. 9(2019) 1803478. |
[59] | T. Liu, C. Jiang, W. You, J. Yu, J. Mater. Chem. A 5(2017) 8635-8643. |
[60] | T. Liu, L. Zhang, B. Cheng, X. Hu, J. Yu, Cell Rep. Phys. Sci. 1(2020) 100215. |
[61] |
D. He, G. Wang, G. Liu, J. Bai, H. Suo, C. Zhao, J. Alloys Compd. 699(2017) 706-712.
DOI URL |
[62] |
X. Shao, X. Zheng, W. Zou, Y. Luo, Q. Cen, Q. Ye, X. Xu, F. Wang, Electrochim. Acta 248(2017) 322-332.
DOI URL |
[63] |
F. Liu, L. Zeng, Y. Chen, R. Zhang, R. Yang, J. Pang, L. Ding, H. Liu, W. Zhou, Nano Energy 61(2019) 18-26.
DOI URL |
[64] |
L. Zhang, H. Gong, J. Mater. Chem. A 3(2015) 7607-7615.
DOI URL |
[1] | Xu Bao, Wei-Bin Zhang, Qiang Zhang, Lun Zhang, Xue-Jing Ma, Jianping Long. Interlayer material technology of manganese phosphate toward and beyond electrochemical pseudocapacitance over energy storage application [J]. J. Mater. Sci. Technol., 2021, 71(0): 109-128. |
[2] | Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. NiCoLDH nanosheets grown on MOF-derived Co3O4 triangle nanosheet arrays for high-performance supercapacitor [J]. J. Mater. Sci. Technol., 2021, 62(0): 60-69. |
[3] | Jin Kyu Kim, Chang Soo Lee, Jae Hun Lee, Jung Tae Park, Jong Hak Kim. Ni, Co-double hydroxide wire structures with controllable voids for electrodes of energy-storage devices [J]. J. Mater. Sci. Technol., 2020, 55(0): 126-135. |
[4] | Guoxiang Pan, Feng Cao, Yujian Zhang, Xinhui Xia. N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 144-151. |
[5] | Poulami Hota, Milon Miah, Saptasree Bose, Diptiman Dinda, Uttam K. Ghorai, Yan-Kuin Su, Shyamal K. Saha. Ultra-small amorphous MoS2 decorated reduced graphene oxide for supercapacitor application [J]. J. Mater. Sci. Technol., 2020, 40(0): 196-203. |
[6] | Juan Du, Aibing Chen, Yue Zhang, Shuang Zong, Haixia Wu, Lei Liu. PVP-assisted preparation of nitrogen doped mesoporous carbon materials for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 197-204. |
[7] | Jing Liang, Cuili Xiang, Yongjin Zou, Xuebu Hu, Hailiang Chu, Shujun Qiu, Fen Xu, Lixian Sun. Spacing graphene and Ni-Co layered double hydroxides with polypyrrole for high-performance supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 190-197. |
[8] | Licheng Zhao, Ping Zhang, Yanan Zhang, Zhi Zhang, Lei Yang, Zhi-Gang Chen. Facile synthesis of hierarchical Ni3Se2 nanodendrite arrays for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 54(0): 69-76. |
[9] | Yiwen Hong, Jingli Xu, Jin Suk Chung, Won Mook Choi. Graphene quantum dots/Ni(OH)2 nanocomposites on carbon cloth as a binder-free electrode for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 73-79. |
[10] | Han Wu, Jingdong Guo, De’an Yang. Facile autoreduction synthesis of core-shell Bi-Bi2O3/CNT with 3-dimensional neural network structure for high-rate performance supercapacitor [J]. J. Mater. Sci. Technol., 2020, 47(0): 169-176. |
[11] | Xueying Yang, Cuili Xiang, Yongjin Zou, Jing Liang, Huanzhi Zhang, Erhu Yan, Fen Xu, Xuebu Hu, Qiong Cheng, Lixian Sun. Low-temperature synthesis of sea urchin-like Co-Ni oxide on graphene oxide for supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2020, 55(0): 223-230. |
[12] | Tao Liu, Jiahao Liu, Liuyang Zhang, Bei Cheng, Jiaguo Yu. Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor [J]. J. Mater. Sci. Technol., 2020, 47(0): 113-121. |
[13] | Yin Liu, Cuili Xiang, Hailiang Chu, Shujun Qiu, Jennifer McLeod, Zhe She, Fen Xu, Lixian Sun, Yongjin Zou. Binary Co-Ni oxide nanoparticle-loaded hierarchical graphitic porous carbon for high-performance supercapacitors [J]. J. Mater. Sci. Technol., 2020, 37(0): 135-142. |
[14] | Lu Liu, Xi Hu, Hong-Yan Zeng, Mo-Yu Yi, Shi-Gen Shen, Sheng Xu, Xi Cao, Jin-Ze Du. Preparation of NiCoFe-hydroxide/polyaniline composite for enhanced-performance supercapacitors [J]. J. Mater. Sci. Technol., 2019, 35(8): 1691-1699. |
[15] | Huan Liu, Haijun Yu. Ionic liquids for electrochemical energy storage devices applications [J]. J. Mater. Sci. Technol., 2019, 35(4): 674-686. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||