J. Mater. Sci. Technol. ›› 2021, Vol. 78: 110-120.DOI: 10.1016/j.jmst.2020.10.054
• Review Article • Previous Articles Next Articles
Ya Zhaoa, Yonghua Suna, Weiwei Lanb, Zhong Wanga, Yi Zhanga, Di Huangb,*(), Xiaohong Yaoa, Ruiqiang Hanga,*(
)
Received:
2020-08-27
Revised:
2020-10-27
Accepted:
2020-10-30
Published:
2021-07-10
Online:
2020-11-21
Contact:
Di Huang,Ruiqiang Hang
About author:
hangruiqiang@tyut.edu.cn(R. Hang).Ya Zhao, Yonghua Sun, Weiwei Lan, Zhong Wang, Yi Zhang, Di Huang, Xiaohong Yao, Ruiqiang Hang. Self-assembled nanosheets on NiTi alloy facilitate endothelial cell function and manipulate macrophage immune response[J]. J. Mater. Sci. Technol., 2021, 78: 110-120.
Fig. 1. (a) SEM images. (b) XPS survey spectra. (c) High-resolution XPS spectra of Ti 2p. (d) High-resolution XPS spectra of Ni 2p. (e) High-resolution XPS spectra of K 2p.
Sample | Atomic concentrations (at.%) | ||||||
---|---|---|---|---|---|---|---|
C | N | K | Ni | O | Ti | Ni/Ti | |
NiTi-MP | 42.16 | 2.02 | - | 2.73 | 46.40 | 6.69 | 0.41 |
AC-2.5 M | 54.61 | 2.20 | 2.21 | 7.03 | 32.50 | 1.45 | 4.85 |
AC-5 M | 52.98 | 2.57 | 3.44 | 6.51 | 32.98 | 1.52 | 4.28 |
AC-15 M | 37.92 | - | 3.11 | 9.64 | 45.04 | 4.29 | 2.25 |
Table 1 Elemental concentrations (at.%) on the surface of all the samples.
Sample | Atomic concentrations (at.%) | ||||||
---|---|---|---|---|---|---|---|
C | N | K | Ni | O | Ti | Ni/Ti | |
NiTi-MP | 42.16 | 2.02 | - | 2.73 | 46.40 | 6.69 | 0.41 |
AC-2.5 M | 54.61 | 2.20 | 2.21 | 7.03 | 32.50 | 1.45 | 4.85 |
AC-5 M | 52.98 | 2.57 | 3.44 | 6.51 | 32.98 | 1.52 | 4.28 |
AC-15 M | 37.92 | - | 3.11 | 9.64 | 45.04 | 4.29 | 2.25 |
Fig. 3. (a) Water contact angles of the samples. (b) Histogram of Ni2+ release concentrations from all the samples for 24 h. *p < 0.05 when compared with NiTi-MP, **p < 0.01 when compared with NiTi-MP, $$p < 0.01 when compared with AC-2.5 M, @@p < 0.01 when compared with AC-5 M.
Fig. 4. (a) Fluorescence images of nuclei after incubation for 4 h. (b) Quantitative results of cell adhesion. (c) Fluorescence images of cytoskeleton (green) and nuclei (blue) of ECs cultured on the sample surfaces for 24 h. (d) FE-SEM images of ECs after culturing on the sample surfaces for 24 h. (e) Fluorescence images of live/dead staining of ECs cultured on the sample surfaces. (f) CCK-8 results of ECs after culturing on the sample surfaces for 1, 3, and 5 days. *p < 0.05 when compared with NiTi-MP, **p < 0.01 when compared with NiTi-MP, $p < 0.05 when compared with AC-2.5 M, $$p < 0.01 when compared with AC-2.5 M, @p < 0.01 when compared with AC-5 M, @@p < 0.01 when compared with AC-5 M.
Fig. 5. (a) Representative fluorescence images of NO in ECs stained by DAF-FM DA after culturing on the sample surfaces for 1 day. (b) Mean fluorescence intensity of NO in ECs. (c) VEGF concentrations secreted by ECs after culturing on the sample surfaces for 1 day. (d) Fluorescence images showing the migration of ECs cultured on different sample surfaces. (e) Quantitative results of migration distance of ECs. *p < 0.05 when compared with NiTi-MP, **p < 0.01 when compared with NiTi-MP, $p < 0.05 when compared with AC-2.5 M, $$p < 0.01 when compared with AC-2.5 M, @@p < 0.01 when compared with AC-5 M.
Fig. 6. (a) Optical images of ECs after incubation on the matrix gel for 4, 8, 12, and 18 h. (b)-(e) histograms of the numbers of nodes, circles, and tubes formed by ECs after incubated in the gel for 4, 8, 12, and 18 h on the gel. *p < 0.05 when compared with NiTi-MP; **p < 0.01 when compared with NiTi-MP; $p < 0.05 when compared with AC-2.5 M; $$p < 0.01 when compared with AC-2.5 M; @p < 0.05 when compared with AC-5 M; @@p < 0.01 when compared with AC-5 M.
Fig. 7. (a) SEM images showing the morphology of macrophages after culturing on the sample surfaces for 1 day. (b) The expression of inflammatory genes (IL-1β, TNF-α, IL-18, and IL-6), M1 markers (CD11, CCR-7, iNOS, and CD86), M2 markers (IL-10, CD163, CD206, and ARG1), and growth factors (TGF-β, BMP2, and VEGF) in macrophages after culturing on the sample surfaces for 1 day.
Fig. 8. The influence of the macrophage-conditioned medium on ECs. (a) Fluorescence images of live/dead staining of ECs after culturing for 1 and 3 days. (b) CCK-8 results of ECs after culturing for 1 and 3 days. (c) Fluorescence images of NO in ECs stained by DAF-FM DA after culturing for 1 day. (d) Mean fluorescence intensity of NO in ECs. (e) Quantitative results of VEGF secretion of ECs after culturing for 1 day. (f) Optical images of EC migration. (g) Migration distance of ECs. (h) Angiogenic-related gene expression of ECs after culturing for 1 day. *p < 0.05 when compared with NiTi-MP, **p < 0.01 when compared with NiTi-MP, $p < 0.05 when compared with AC-2.5 M, $$p < 0.01 when compared with AC-2.5 M, @p < 0.05 when compared with AC-5 M, @@p < 0.01 when compared with AC-5 M.
[1] | S.S. Virani, A. Alonso, E.J. Benjamin, M.S. Bittencourt, C.W. Callaway, A.P. Carson, A.M. Chamberlain, A.R. Chang, S. Cheng, F.N. Delling, L. Djousse, M.S.V. Elkind, J.F. Ferguson, M. Fornage, S.S. Khan, B.M. Kissela, K.L. Knutson, T.W. Kwan, D.T. Lackland, T.T. Lewis, J.H. Lichtman, C.T. Longenecker, M.S. Loop, P.L. Lutsey, S.S. Martin, K. Matsushita, A.E. Moran, M.E. Mussolino, A.M. Perak, W.D. Rosamond, G.A. Roth, U.K.A. Sampson, G.M. Satou, E.B. Schroeder, S.H. Shah, C.M. Shay, N.L. Spartano, A. Stokes, D.L. Tirschwell, L.B. VanWagner, C.W. Tsao, Circulation 141(2020) e1-e458. |
[2] |
S. Borhani, S. Hassanajili, S.H. Ahmadi Tafti, S. Rabbani, Prog. Biomater. 7(2018) 175-205.
DOI URL |
[3] |
Y. Qi, H. Qi, Y. He, W. Lin, P. Li, L. Qin, Y. Hu, L. Chen, Q. Liu, H. Sun, Q. Liu, G. Zhang, S. Cui, J. Hu, L. Yu, D. Zhang, J. Ding, ACS Appl. Mater. Interfaces 10(2018) 182-192.
DOI URL |
[4] |
A. Kastrati, A. Schömig, S. Elezi, H. Schühlen, J. Dirschinger, M. Hadamitzky, A. Wehinger, J. Hausleiter, H. Walter, F.-J. Neumann , J.Am. Coll. Cardiol. 30(1997) 1428-1436.
DOI URL |
[5] |
J. Wiebe, H.M. Nef, C.W. Hamm, J. Am. Coll. Cardiol. 64(2014) 2541-2551.
DOI URL |
[6] |
M. Joner, A.V. Finn, A. Farb, E.K. Mont, F.D. Kolodgie, E. Ladich, R. Kutys, K. Skorija, H.K. Gold, R. Virmani, J. Am. Coll. Cardiol 48(2006) 193-202.
DOI URL |
[7] |
F. Otsuka, A.V. Finn, S.K. Yazdani, M. Nakano, F.D. Kolodgie, R. Virmani, Nat. Rev. Cardiol. 9(2012) 439-453.
DOI URL |
[8] |
R. Virmani, A. Farb, Curr. Opin. Lipidol. 10(1999) 499-506.
PMID |
[9] |
F. Alfonso, R.A. Byrne, F. Rivero, A. Kastrati, J. Am. Coll. Cardiol. 63(2014) 2659-2673.
DOI URL |
[10] |
B.N. Brown, B.D. Ratner, S.B. Goodman, S. Amar, S.F. Badylak, Biomaterials 33(2012) 3792-3802.
DOI URL |
[11] |
H.J. Williams, E.A. Fisher, D.R. Greaves, J. Innate Immun. 4(2012) 498-508.
DOI PMID |
[12] |
P. Libby, Am. J. Clin. Nutr. 83(2006) 456S-460S.
DOI URL |
[13] |
K.L. Spiller, R.R. Anfang, K.J. Spiller, J. Ng, K.R. Nakazawa, J.W. Daulton, G. Vunjak-Novakovic, Biomaterials 35(2014) 4477-4488.
DOI PMID |
[14] |
Z. Chen, A. Bachhuka, F. Wei, X. Wang, G. Liu, K. Vasilev, Y. Xiao, Nanoscale 9(2017) 18129-18152.
DOI URL |
[15] |
D. Wang, F. Peng, J. Li, Y. Qiao, Q. Li, X. Liu, Mater. Today 20(2017) 238-257.
DOI URL |
[16] | T.S. Jang, J.H. Lee, S. Kim, C. Park, J. Song, H.J. Jae, H.E. Kim, J.W. Chung, H.D. Jung, Biomaterials 223 (2019), 119461. |
[17] | C.C. Mohan, A.M. Cherian, S. Kurup, J. Joseph, M.B. Nair, M. Vijayakumar, S.V. Nair, D. Menon, Adv. Healthc. Mater. 6(2017), 1601353. |
[18] |
P.P. Lee, A. Cerchiari, T.A. Desai, Nano Lett. 14(2014) 5021-5028.
DOI URL |
[19] |
M. Mohiuddin, H.A. Pan, Y.C. Hung, G.S. Huang, Nanoscale Res. Lett. 7(2012) 1-9.
DOI URL |
[20] | D.M. McDonald, Am.J. Respir. Crit. Care Med. 164(2001) S39-S45. |
[21] | R. Hang, F. Zhao, X. Yao, B. Tang, P.K. Chu, Appl. Surf. Sci. 517(2020), 146118. |
[22] |
R. Hang, Y. Liu, S. Liu, L. Bai, A. Gao, X. Zhang, X. Huang, B. Tang, P.K. Chu, Corros. Sci. 103(2016) 173-180.
DOI URL |
[23] |
R. Hang, Y. Liu, L. Zhao, A. Gao, L. Bai, X. Huang, X. Zhang, B. Tang, P.K. Chu, Sci. Rep. 4(2014) 7547.
DOI URL |
[24] |
R. Hang, S. Liu, Y. Liu, Y. Zhao, L. Bai, M. Jin, X. Zhang, X. Huang, X. Yao, B. Tang, Mater. Sci. Eng. C 97(2019) 715-722.
DOI URL |
[25] |
P.P. Lee, T.A. Desai, ACS Biomater. Sci. Eng. 2(2016) 409-414.
DOI URL |
[26] |
S.Y. Lee, C.H. Lee, D.Y. Kim, J.P. Locquet, J.W. Seo, Nanomaterials 5(2015) 1397-1417.
DOI URL |
[27] |
S.Y. Lee, J. Zhang, L.W. Jang, Z. Zhang, Y. Guo, S. Salameh, S. Kim, D.I. Son, V.S. Rangasamy, S. Thayumanasundaram, J.P. Locquet, J.W. Seo, J. Nanosci. Nanotechnol. 19(2019) 366-374.
DOI URL |
[28] |
C.C. Liang, A.Y. Park, J.L. Guan, Nat. Protoc. 2(2007) 329-333.
DOI URL |
[29] |
R. Hang, X. Huang, L. Tian, Z. He, B. Tang, Electrochim. Acta 70(2012) 382-393.
DOI URL |
[30] |
H. Chen, L. Hu, Y. Yan, R. Che, M. Chen, L. Wu, Adv. Energy Mater. 3(2013) 1636-1646.
DOI URL |
[31] |
L. Peng, M.L. Eltgroth, T.J. LaTempa, C.A. Grimes, T.A. Desai, Biomaterials 30(2009) 1268-1272.
DOI URL |
[32] |
X. Peng, A. Chen, Adv. Funct. Mater. 16(2006) 1355-1362.
DOI URL |
[33] |
K. Cai, M. Lai, W. Yang, R. Hu, R. Xin, Q. Liu, K.L. Sung, Acta Biomater. 6(2010) 2314-2321.
DOI URL |
[34] |
D.-B. Kuang, B.-X. Lei, Y.-P. Pan, X.-Y. Yu, C.-Y. Su, J. Phys. Chem. C 113(2009) 5508-5513.
DOI URL |
[35] |
S. Jana, Acta Biomater. 99(2019) 53-71.
DOI URL |
[36] |
J. Lu, M.P. Rao, N.C. MacDonald, D. Khang, T.J. Webster, Acta Biomater. 4(2008) 192-201.
DOI URL |
[37] |
A.W. Martinez, E.L. Chaikof, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3(2011) 256-268.
DOI PMID |
[38] | Y. Nakano, Y. Taguchi, T. Sekino, J. Okazaki, J. Oral Tissue Eng. 11(2014) 189-200. |
[39] |
M.J. Cross, L. Claesson-Welsh, Trends Pharmacol. Sci. 22(2001) 201-207.
PMID |
[40] |
M. Presta, P. Dell’Era, S. Mitola, E. Moroni, R. Ronca, M. Rusnati, Cytokine Growth Factor Rev. 16(2005) 159-178.
DOI URL |
[41] |
L.T. Vu, G. Jain, B.D. Veres, P. Rajagopalan, Tissue Eng. B 21(2015) 67-74.
DOI URL |
[42] |
A.J. Ridley, Cell 145(2011) 1012-1022.
DOI PMID |
[43] | S.S. Ahanchi, N.D. Tsihlis, M.R. Kibbe, J. Cardiovasc. Surg. 45(2007) A64-A73. |
[44] |
R.M. Palmer, A.G. Ferrige, S. Moncada, Nature 327(1987) 524-526.
PMID |
[45] | M. Simons, E. Gordon, L. Claesson-Welsh, Nat. Rev. Mol. Cell Biol. 17(2016) 611-625. |
[46] |
L. Morbidelli, S. Donnini, M. Ziche, Curr. Pharm. Des. 9(2003) 521-530.
DOI URL |
[47] |
C. Napoli, F. de Nigris, S. Williams-Ignarro, O. Pignalosa, V. Sica, L.J. Ignarro, Nitric Oxide 15(2006) 265-279.
DOI URL |
[48] |
D.A. Popowich, V. Varu, M.R. Kibbe, Vascular 15(2007) 324-335.
PMID |
[49] |
P. Carmeliet, R.K. Jain, Nature 473(2011) 298-307.
DOI PMID |
[50] |
M. Inoue, H. Itoh, M. Ueda, T. Naruko, A. Kojima, R. Komatsu, K. Doi, Y. Ogawa, N. Tamura, K. Takaya, T. Igaki, J. Yamashita, T.H. Chun, K. Masatsugu, A.E. Becker, K. Nakao, Circulation 98 (1998) 2108-2116.
PMID |
[51] |
A.K. Tassiopoulos, H.P. Greisler, J. Biomater. Sci. Polym. Ed. 11(2000) 1275-1284.
DOI URL |
[52] |
Z. Chen, T. Klein, R.Z. Murray, R. Crawford, J. Chang, C. Wu, Y. Xiao, Mater. Today 19(2016) 304-321.
DOI URL |
[53] |
S.N. Christo, A. Bachhuka, K.R. Diener, A. Mierczynska, J.D. Hayball, K. Vasilev, Adv. Healthc. Mater. 5(2016) 956-965.
DOI URL |
[54] |
S. Svensson, M. Forsberg, M. Hulander, F. Vazirisani, A. Palmquist, J. Lausmaa, P. Thomsen, M. Trobos, Int. J. Nanomed. 9(2014) 775-794.
DOI PMID |
[55] |
M. Bigerelle, K. Anselme, E. Dufresne, P. Hardouin, A. Iost, Biomol. Eng. 19(2002) 79-83.
PMID |
[56] |
N. Jetten, S. Verbruggen, M.J. Gijbels, M.J. Post, M.P. De Winther, M.M. Donners, Angiogenesis 17(2014) 109-118.
DOI URL |
[57] |
X. Huang, M. Chen, H. Wu, Y. Jiao, C. Zhou, ACS Biomater. Sci. Eng. 6(2020) 1614-1629.
DOI URL |
[58] |
J.E. Lauckner, B. Hille, K. Mackie, Proc. Natl. Acad. Sci. 102(2005) 19144-19149.
DOI URL |
[59] | B.O. Zhou, L. Ding, S.J. Morrison, eLife 4(2015) 05521. |
[60] |
R.D. Starke, F. Ferraro, K.E. Paschalaki, N.H. Dryden, T.A. McKinnon, R.E. Sutton, E.M. Payne, D.O. Haskard, A.D. Hughes, D.F. Cutler, M.A. Laffan, A.M. Randi, Blood 117(2011) 1071-1080.
DOI URL |
[1] | Qinqin Liu, Jinxin Huang, Hua Tang, Xiaohui Yu, Jun Shen. Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 196-205. |
[2] | Yanmei Zheng, Yuanyuan Liu, Xinli Guo, Zhongtao Chen, Weijie Zhang, Yixuan Wang, Xuan Tang, Yao Zhang, Yuhong Zhao. Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants [J]. J. Mater. Sci. Technol., 2020, 41(0): 117-126. |
[3] | Tingmin Di, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. CdS nanosheets decorated with Ni@graphene core-shell cocatalyst for superior photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 170-178. |
[4] | Na Li, Fei Chen, Xiangtao Chen, Zhongxu Chen, Yang Qi, Xiaodong Li, Xudong Sun. A bipolar modified separator using TiO2 nanosheets anchored on N-doped carbon scaffold for high-performance Li-S batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 152-158. |
[5] | Jing Wang, Liang Zhang, Tianshu Zhang, Ting Du, Tao Li, Tianli Yue, Zhonghong Li, Jianlong Wang. Selective removal of heavy metal ions in aqueous solutions by sulfide-selector intercalated layered double hydroxide adsorbent [J]. J. Mater. Sci. Technol., 2019, 35(9): 1809-1816. |
[6] | Jianfeng Wang, Hongbo Zhou, Liguo Wang, Shijie Zhu, Shaokang Guan. Microstructure, mechanical properties and deformation mechanisms of an as-cast Mg-Zn-Y-Nd-Zr alloy for stent applications [J]. J. Mater. Sci. Technol., 2019, 35(7): 1211-1217. |
[7] | Qian Yan, Gui-Fang Huang, Dong-Feng Li, Ming Zhang, An-Lian Pan, Wei-Qing Huang. Facile synthesis and superior photocatalytic and electrocatalytic performances of porous B-doped g-C3N4 nanosheets [J]. J. Mater. Sci. Technol., 2018, 34(12): 2515-2520. |
[8] | Xin Gao, Hongyan Yue, Erjun Guo, Shaolin Zhang, Longhui Yao, Xuanyu Lin, Bao Wang, Enhao Guan. Tribological properties of copper matrix composites reinforced with homogeneously dispersed graphene nanosheets [J]. J. Mater. Sci. Technol., 2018, 34(10): 1925-1931. |
[9] | Rong-Chang Zeng, Xiao-Ting Li, Li-Jun Liu, Shuo-Qi Li, Fen Zhang. In vitro Degradation of Pure Mg for Esophageal Stent in Artificial Saliva [J]. J. Mater. Sci. Technol., 2016, 32(5): 437-444. |
[10] | Qiang Wang, Jing Pan, Ming Li, Yuanyuan Luo, Hao Wu, Li Zhong, Guanghai Li. VO2 (B) Nanosheets as a Cathode Material for Li-ion Battery [J]. J. Mater. Sci. Technol., 2015, 31(6): 630-633. |
[11] | Xinning Luan, Ying Wang. Thermal Annealing and Graphene Modification of Exfoliated Hydrogen Titanate Nanosheets for Enhanced Lithium-ion Intercalation Properties [J]. J. Mater. Sci. Technol., 2014, 30(9): 839-846. |
[12] | Yuliang Liu, Junpeng Wang, Chunhua Xu, Zishu Si, Shensheng Xu, Sanqiang Shi. Effects of Annealing Temperature on Cu-Doped ZnO Nanosheets [J]. J. Mater. Sci. Technol., 2014, 30(9): 860-866. |
[13] | K. Mageshwari, R. Sathyamoorthy. Flower-shaped CuO Nanostructures: Synthesis, Characterization and Antimicrobial Activity [J]. J. Mater. Sci. Technol., 2013, 29(10): 909-914. |
[14] | Yibin Ren, Peng Wan, Feng Liu, Bingchun Zhang, Ke Yang. In vitro Study on a New High Nitrogen Nickel-free Austenitic Stainless Steel for Coronary Stents [J]. J Mater Sci Technol, 2011, 27(4): 325-331. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||